
First Edition

Written by Alexander Dawson

45 Articles for Web Developers

Six Revisions

Six Revisions: 45 Articles for Web Developers, First Edition

© Copyright 2018, Alexander Dawson, All rights reserved.

Find me on the Web at: https://alexanderdawson.com/

To report errors, send me a message at: alex@hitechy.com

Editor: Jacob Gube

Writer: Alexander Dawson

Publisher: Six Revisions

Credits: HiTechy

Disclaimer: No part of the contents of this book may be reproduced,
stored in a retrieval system or transmitted in any form or by any
means beyond its license, electronic, mechanical, photocopying,
recording, scanning, or otherwise beyond international and local
copyright law without the written permission and consent of the
publisher and the author of this book. The information in this book is
provided and distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the production of this book,
neither the author or HiTechy shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the instructions contained in this book
or by the computer software and hardware products described in it.

For technical support relating to anything on this page visit my
website.

First published and showcased online through the now defunct web
design and developer magazine Six Revisions, of which I was their
most active guest contributor.

Printed and published in the United Kingdom and United States.

Page of 2 650

Page of 3 650

Table of Contents
The Anatomy of a Website 6

Web Languages: Decoded 24

Semantic CSS3 Lightboxes 42

Problems Using Web Validation Services 58

Sexy Tooltips with Just CSS 68

250 Quick Web Design Tips (Part 1) 79

250 Quick Web Design Tips (Part 2) 97

The Web’s Undead 109

5 Web Files That Will Improve Your Website 119

A Guide on Layout Types in Web Design 135

Reductionism in Web Design 149

The Art of Distinction in Web Design 161

A Comprehensive Guide Inside Your <head> 177

Mobile Web Design: Best Practices 191

CSS3 Card Trick: A Fun CSS3 Experiment 208

Designing By Numbers: Data Analysis for Web Designers 222

The Science Behind a Single Page Website 233

Improve Site Usability by Studying Museums 251

Human Behavior Theories That Can be Applied to Web Design 268

Evolution of Websites: A Darwinian Tale 280

Privacy and the User Experience 291

Page of 4 650

100 Exceedingly Useful CSS Tips and Tricks 298

The A-Z List for Web Designers 312

Ultimate Guide to Microformats: Reference and Examples 332

Becoming a Better Web Designer 358

Ways to Horrify Website Designers 370

60 Questions to Consider When Designing a Website 378

Situational Design for the Web 389

The Importance of Historiography on the Web 399

Why IE9 is a Web Designer’s Nightmare 407

Progressive Disclosure in User Interfaces 417

Effective Communication Tips for Web Designers 433

Designing for Different Age Groups 444

Smarter Web Designs: Responsive and Customizable 456

A Guide to CSS Colors in Web Design 464

5 Little-Known Web Files That Can Enhance Your Website 476

The Evolution of Internet-Enabled Devices 492

The Proxority Principle in Web Design 498

Getting the Most Out of QR Codes Using URI Schemes 508

Why We Still Need Web-safe Fonts 519

15 HTML Questions for Testing Your Knowledge 530

15 CSS Questions to Test Your Knowledge 535

Web Agility: Pushing for Performance 543

Page of 5 650

A Guide to Styling with SVG 549

Another 6 Web Files to Help Improve Your Website 555

Page of 6 650

Page of 7 650

The Anatomy of a Website
Many people find it hard to picture a website as more than a bundle
of content. This often makes explaining the mixture of languages used
and the way everything comes together a difficult task.

Because what makes up a website can be related and linked to the
physiology of a human body, this article’s comparison should help
clients and beginners alike understand the complex nature of a site’s
creation and components.

Disclaimer: It’s probably worth pointing out before we start the
"autopsy" that I’m not a doctor. Therefore, I recommend you don’t
practice this literally on your friends and family — they won’t
appreciate you peeking inside their ears to look for meta information!

Designer DNA: Schemas and DTDs
Humans have predefined characteristics for how we look. These
building blocks of life are passed down to us through genetics, and
when arranged properly, give us our unique appearance.

This process of evolution takes millions of years to adapt to changing
environments and certainly plays a part in limiting both our structural
and visual appearance.

In terms of the Web, the regulators of code "genetics" are commonly
known as Schemas (you’ll be aware of these devices from DTDs).

Page of 8 650

The human body contains DNA, just like a website. It explains how
your body should react.

Of course, while the process of creating a schema doesn’t take
millions of years, it does take a certain length of time for new
languages to appear and become widely adopted, thereby evolving
the building blocks of your website.

As a result, while sites may look different, you can be assured that
they only use one of a family of structural languages that predefine
many of its characteristics, and what you end up with will share
common elements and tags with many millions of others.

Bonus: The very inclusion of a DTD in your site can set standards for
your code and avoid the obscurities that quirks mode can present to
your web browser. Therefore, having this DNA, which describes the
language used, can prove beneficial in inheriting Web standards.

Page of 9 650

A language specification and DTD provide the genetic material all
websites use and inherit.

Skeletal Structure: The Structural Markup
The structure of the human body is made up of bones that define our
basic shape — the same is true of web documents in the sense that
they are shaped from various interlinking elements that form the
backbone of the Web.

Most web documents are formed through languages which describe
the skeletal structure of the document, such as HTML and XML. RSS is
also a classic example of a markup that structures a website’s content.

Without these core markup languages, your website would not be
able to maintain its layout.

Page of 10 650

All the parts of a website join up, like the bones that interconnect
within your body.

While each bone in the human body serves a specific purpose, entire
groups of bones can serve a single job, such as the ribs (each
protects your lungs) or your finger bones which help you grasp
objects.

Because this repeating purpose can exist within a website’s body,
they can be distinguished by attaching conventions like microformats
that can give additional semantic characteristics and value beyond
what a "generic" or reused element would offer, acting as a point of
bodily recognition.

Bonus: Microformats are descriptive elements (usually as class or ID
values) which give your structure some recognizable semantic values
— this is much like recognizing each finger bone by its appearance
and unique characteristic. It’s labeling your anatomy for referral!

Page of 11 650

Bones are like web page elements: They build up a logical structure
that gives the body its core appearance.

Mechanical Muscles: Client-side Scripting
Being able to move allows you to interact and engage with people
you meet. Without muscles, we can’t turn thoughts into a reaction.

As people expect a certain level of involvement with your site, not
enough interactivity could make your site appear unemotional.

Muscles work between the skin and bones to allow both to fluidly
play their part in the interaction. The same is true about sites where
behaviour underpins the style and structure of a site to "flex" only
when interaction is required.

Page of 12 650

When you flex your muscles, movement occurs. When a website
flexes, a reaction also occurs.

Client-side scripting is the muscular component of a site. Languages
like JavaScript allow interaction when visitors click, move their mouse,
press a key on their keyboard or make any other noticeable gesture.
This response mechanism functions just like the body in that it reacts
based on its surroundings.

Simply put, the "muscles" act as a way to interact and make noticeable
changes in structure (standing up rather than sitting down) or
appearance (smiling instead of frowning).

Bonus: Just as humans have multiple methods of input (such as
sensory mechanisms like touch, taste, sight, smell and hearing),
JavaScript and other client-side scripting languages can interact and
react based on its own input methods like touch, speech, automated
actions and movement.

Page of 13 650

Movement and reaction are key components to both human survival
and website interaction.

Nervous Reactions: The Web Browser
With scripting included in your website comes the need to send and
receive information that acts upon the interaction occurring within
your design. In a website, the mechanism of communicating these
signals belongs to the user-agent or server that handles the requests
and reflects those requests to act into a mechanism that is visible to
the end user. In short: Your web browser works the mojo!

In the human body, such requests are sent as electrical signals that
pass through the various organs and are broadcasted to conduct the
action determined from the receptor, such as when you feel pain.

In a website, while pain doesn’t exist (except for the end user who
encounters an unusable interface element like a nasty webform) the
code fires signals to the browser upon examination and triggers
structure, style and behavioral reactions in turn.

Bonus: The rendering engine of a browser does everything from
ensuring the sites "body" appears correctly, right down to reacting
upon interaction. Even the likes of Flash, which attach themselves to a
browser, have their own method of "nerve"-based interaction!

Page of 14 650

Flash websites are a great example of how information is rendered to
progress effects.

The Heart: Content and the Community
The heart of a website is its content — if you’ve read any "Content is
King" articles, you’ll know what I mean.

With the human heart, a constant supply of oxygen needs to be
pumped around the body to the vital organs — otherwise you’ll suffer
long-term damage.

The same is true for the Web, when a lack of quality regularly updated
content exists, the site will become inefficient in producing visitors
(the life blood of a site) and will starve (as it’s abandoned), thereby
giving the site’s body a fatal blow.

Page of 15 650

If the heart is healthy, the pathways will be clear. If too much damage
occurs, it may break.

The website’s content is encased within the structure, securing it
where it needs to appear.

The more pages you add, the stronger the structure — both internal
and external — of the website will become. Therefore, as a result, it
will become more resilient for when illness appears. The outdated but
still constantly visited W3Schools is proof of this.

The balance of getting visitors (blood) around the body of the site will
depend on how much depth and energy is put into a content-rich
website.

Bonus: While not enough visitors can cause the heart to be starved of
oxygen, too many visitors can have a similar effect. Just like when
your heart works too hard, a sudden spike in traffic could make the
server where your website is located collapse under the pressure, just
like a heart attack!

Page of 16 650

Poor quality content of little visitor value will simply result in your
community dying.

Blood Vessels: Information Architecture
As mentioned above, the ability to get people (the blood) to the
places they need to get (feeding the site’s popularity and
architecture) is one of the key elements of building a website.

The way a site takes to interlink all the bodily elements which
comprise a website is commonly referred to the information
architecture. This — in simple terms — is the way we organize,
structure and relate pages of a web design together (and how each
page is structured in itself).

This well-organized method of interlinking the needs of various
components of a website can be easily be recognized in the human
body in terms of the blood vessels.

As described before, if visitors are the life blood of a website, the
blood vessels would be the way we address the interlinking of pages,
the findability of information and how files connect to feed each
other (relative to the overall site structure).

Page of 17 650

Just as blood flows in the body, humans should flow between pages
and sections.

Bonus: Usability and accessibility have their place in this analysis.
When dead links or poor navigation occurs, the damage caused can
hemorrhage visitors (as they leave your site). The case of where a
button cost millions of dollars shows this relative link in full effect!

If pages don’t link together appropriately, it can result in a loss of your
sites visitors.

Sexy Skin: Aesthetics and Web Design
What makes people look human? Well, part of it is their features such
as their eyes, nose and mouth, but their skin and visual appearance
play an important role.

Whether someone is tall, short, fat or thin, the skin adopts the form,
and is fairly elastic and flexible in how it covers all of the structures of
the body.

While you’ll want your site’s skin to appear beautiful (as design is as
relevant as human beauty) you also want to make sure that nothing
"hangs out", looks ugly, or out of place!

Page of 18 650

Things always look prettier with skin attached; your website is no
different!

In terms of web design, the primary language dealing with the style
of a website is CSS. This attaches itself to your structure and layers on
elements of style, which give the visible physical appearance you
desire.

If you want your site’s skin to be neon green and flashing pink, though
not advised, it is entirely possible!

Just like in humans, the skin is simply the outer layer that works with
the internal elements but has its own unique method of affecting how
the body will look to the visitor.

Bonus: Unlike humans, a website design can alter its own physical
appearance dynamically. Techniques include using behaviour like
JavaScript to alter style on demand. This gives sites a chameleon-like
quality because they can adapt to their conditions or surroundings.

Page of 19 650

When the skin is wrapped around something, it feels like an entirely
different creature.

Brain Retain: Server-side Scripting and DBMS
The thing in your head allowing you to think, remember, and behave
according to your surroundings, is the closest thing to a computer
you have.

The brain allows decisions — the best method of dealing with
complex situations — to be made.

How does this apply to a site? There are three things that must be
taken into account which apply directly between human and website
anatomy. These are referred to as the acts of behaviour, memory and
identity.

Page of 20 650

The brain handles a lot of stuff, even your website’s server has to take
in everything it’s told!

When we talk about the behaviour of the brain, I am referring to the
things we think about doing and then override our bodies to achieve,
such as when you instruct your body to punch someone (thereby
carrying out the punching action).

While we have already mentioned behaviour in terms of muscles, you
should remember that you do not think (actively) about breathing or
walking — you go through a methodology of stimulus and response
(and the brain controls reactions which occur).

Page of 21 650

Bonus: Server-side scripting for dynamic websites showcase a site’s
brain at work, allowing your website to make decisions based on a
situation (or previous knowledge as held in storage) and act upon
them rather than automatically carrying out an action (like muscles).

The brain has the ability to remember many thousands of things, and
computers can do the same. When you store information within a
database, it holds the information until it is requested, deleted or
damaged (this acts the same as a human’s long-term memory). This
information is usually organized relative to what type of information is
contained, and can be easily searched or referenced to access the
information without suffering digital amnesia.

Servers have to relay the content you input to a place where it can be
recalled, it’s just like human memory.

Of course, everyone also has short-term memory: Both cookies
(which retain stimulus specific data like usernames and passwords)
and browser caching (which contain re-usable more generic visual
stimulus — like images and client-side scripts) hold the purpose of
storing small pieces of information for a limited period of time.

With both long and short-term memory that can be retrieved and
used until deleted or committed to a permanent and secure form of
memory, it’s easy to see the human resemblance.

Page of 22 650

Bonus: Of course, the human brain is much more powerful than that
of current computer systems, but the diversity of information
management, memory and organization gives computers a strong
relationship in the likeness the human anatomy has to websites.

Last is the act of identity: being able to know who, what and why you
are.

We all have our own personalities and this is something we take for
granted, but sites can have their own unique sense of self in the form
of metadata.

This information is held in the head (or as I call it, "thinking" code) of
each page which is not visible to visitors but explains to search
engines, browsers or applications wanting to associate with the
contents contextual or semantic value, just like in a reference library.

Page of 23 650

Your head does the thinking and your body visibly reacts, just like
your website.

Bonus: While a site’s identity may be produced by its title and meta
information, the actual information and abilities which a website
contains are ultimately what determine the real nature of a website
(sort of like humans having personalities reflected in their
appearance).

Nature versus Nurture
While all of the above may help you explain the process of web
design to clients in a way they can understand (or perhaps just give
you something fun to pass around the office), it’s important to know
that lessons can — and should — be taken from the relative
interlinking that a site can have with how the human body is formed.

Page of 24 650

A site, just like humans, can suffer imperfections. Some can be
overcome, some can’t (without a total redesign), and therefore care
and attention should be given to helping overcome problems of
significance.

The evolution of a website can equally be put down to a mixture of
nature (what the coder puts into the site) and nurture (what the end-
user adds with growth), both of which have significant importance
and shouldn’t be ignored.

A website’s survival depends on many things working perfectly in
synchronization. I think most of us underestimate how complex
rendering a website is. Frequent testing can spot early onsets of
problems.

But the most important thing to consider is that websites (just like
humans) are formed of many layers, all interacting together, to which
you need to apply as required (without making the site obese).

Think of your website like a child, you don’t just feed it once and
abandon it. The child requires time, money, effort, care and attention
to keep it healthy and help it survive into adulthood.

Page of 25 650

Websites are like humans, they have layers, all interacting and working
in synchronicity.

I think it’s a fair comment to make that while standards and the way
we build websites evolve, the need to make our work less static and
more interactive and dynamic will aid our continued progression
towards the next level of the Web. Who knows, in a few years we
could yet again find ourselves becoming even more involved and
emotionally tied into our brands than we are today!

Sources:

• https://en.wikipedia.org/wiki/XML_schema

• https://en.wikipedia.org/wiki/Document_Type_Definition

• https://www.w3.org/QA/2002/04/valid-dtd-list.html

• http://microformats.org/

• http://www.w3schools.com/

• https://www.lipsum.com/

• http://cybernetnews.com/one-button-costs-google-110-million/

Page of 26 650

https://en.wikipedia.org/wiki/XML_schema
https://en.wikipedia.org/wiki/Document_Type_Definition
https://www.w3.org/QA/2002/04/valid-dtd-list.html
http://microformats.org/
http://www.w3schools.com/
https://www.lipsum.com/
http://cybernetnews.com/one-button-costs-google-110-million/

• https://www.astuteo.com/slickmap/

• http://alistapart.com/

• http://login.live.com/ 

Page of 27 650

https://www.astuteo.com/slickmap/
http://alistapart.com/
http://login.live.com/

Web Languages: Decoded
Those of us who have become well seasoned to the dyslexia-
inducing array of web languages often overlook the diversity and
additional interactivity we can gain by learning another language or
two.

Perhaps you are a beginner trying to understand what you need to
spend time learning, or perhaps you’re an experienced individual
looking for something new to play with.

Whichever situation applies to you, this article aims to underline the
various languages at your disposal and where they fit in the puzzle.

It should be an interesting ride and seasoned experts may find
languages they’ve not yet encountered!

Too Many Cooks
When it comes to the diversity of coding for the web, the well-known
phrase "too many cooks spoil the broth" springs to mind. Not only in
the way browsers support modern standards but the ever increasing
range of competing formats that exist.

Should you use HTML or XHTML, RSS or Atom, PHP or ASP.NET, SVG or
VML, JavaScript or VBS? The list is near endless.

I wouldn’t blame anyone for getting confused at this point because
the question itself often relies on personal preference — something
you probably won’t have established until you understand the
language and use it regularly.

This Catch-22 situation is usually only resolved when experienced
people come together and educate each other on why their
language is better the others (or as I like to call it, a flame war).

Page of 28 650

Enough abbreviations to make an English scholar tremble (and give
you a migraine).

What Web Language Should You Learn?
So what is the answer you seek, to which languages you should
learn? The simple answer is… it depends.

The deciding factor is not only reliant on the type of site you are
trying to produce but also the depth of complexity you wish to delve
into.

Therefore, before we can hope to determine which languages you
should choose, we need to categorize all of the available options
based on their purpose.

At first, this may seem like a complex task, but luckily for us, web
languages are well-documented and each explains its purpose in
context to the various existing layers of the web.

Page of 29 650

Every language has a specification which explains its purpose and
function.

While documentation for each language exists, picking those worthy
of your consideration and how they relate to each other in the
function they undertake is something beginners regularly struggle
with. You literally have to wade through the heavy number of choices
and select one that you looks interesting and useful to you.

While I won’t even attempt to individually explain each language’s
history (as this article will become encyclopedic in length at that point
– instead, I’ll link up to their specifications) we shall coordinate the
choices into easy-to-recognize segments, and from there, you can
decide which choice best meets your needs.

Language Layers
So how many language layers exist? Most people recognize layers
like structural markup (HTML), stylesheet (CSS), client-side scripting
(JavaScript) and server-side scripting (PHP) but you may be surprised
to hear that if you account for every variant based on its intended
purpose, a whopping 15 different layers exist.

Of course at this stage it’s worth pointing out that learning 15
languages to cover every possible layer isn’t going to be in your best
interests as you’ll simply be spending all your time learning, but

Page of 30 650

learning a new layer as you need the skill can be of genuine benefit
to you.

There are 15 language layers which comprise the full spectrum of web
development.

Each layer represents a unique piece of functionality such as the
ability to add behaviour that interacts with the end user (in the case of
JavaScript) or a method of providing dynamic vector graphics on the
screen (in the case of SVG).

Having the knowledge to experiment and implement the various
independent layers will give you an advantage both in operating as a
professional (that you will be able to cover a wider range of skills) and
as a hobbyist or newbie (where you can jump for joy at the extended
level of fun you can have while experimenting with the web’s
offerings).

Page of 31 650

Having a wide range of skills will showcase your ever growing
competency.

Of course, while these layers constitute endless possibilities of
functionality which can be injected into your website, some people
may simply require only a couple of these layers to produce a basic
website (such as HTML and CSS).

There is absolutely nothing wrong with limiting or making a niche for
your skills and become a master of either a single layer (and language
choice).

This article simply acts as a starting point to which you can examine
your current level of knowledge against the wider array of web
languages (to determine what you can follow on from – if you know
any, that is).

Sometimes a simple website requires nothing more than a couple of
languages.

Page of 32 650

Collective Choices
In the language layer diagram that you saw earlier, it became
apparent that there’s a whole bunch of layers which comprise a
website’s unique structure, but as it currently stands, it’s not much use
to you as there’s no actual languages listed.

Well this is where all of those awesome abbreviations come in.

For each language layer that exists, you will find (below) a list of the
languages which fit the category, their browser support levels,
popularity status (useful for seeking help) and details such as the level
of complexity involved, and some recommendations based on that
information (highlighted from the other languages).

Note: Some languages are a subset of another language listed and
some languages may be derived off of a certain implementation, but
due to public awareness they have been referenced separately.

It’s also worth noting that recommendations are provided based on
my own experience, and so there may be some contention on some
points depending on who you talk to.

Page of 33 650

Markup Languages

There are four markup languages involved in web development.

• HTML - https://www.w3.org/TR/html5/

• XHTML - https://www.w3.org/TR/xhtml1/

• XML - https://www.w3.org/TR/xml/

• WML - http://www.wapforum.org/what/technical.htm

• Others: MHTML and SGML

Page of 34 650

https://www.w3.org/TR/html5/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xml/
http://www.wapforum.org/what/technical.htm

Syndication Languages

There are two syndication languages for content delivery.

• Atom - https://tools.ietf.org/html/rfc4287

• RSS - http://www.rssboard.org/rss-specification

• Others: EventsML, GeoRSS, MRSS, NewsML, OPML, SportsML
and XBEL

Page of 35 650

https://tools.ietf.org/html/rfc4287
http://www.rssboard.org/rss-specification

Metadata Languages

There are five methods to embed rich contextual metadata.

• DCMI - http://www.dublincore.org/specifications/

• META (Classic) - https://wiki.whatwg.org/wiki/MetaExtensions

• Microformats - http://microformats.org/wiki/
Main_Page#Specifications

• OWL - https://www.w3.org/TR/owl2-overview/

• RDF - https://www.w3.org/RDF/

• Others: APML, FOAF, hSlice, OpenService Accelerators, P3P, PICS
(Deprecated), SIOC and XFN

Page of 36 650

http://www.dublincore.org/specifications/
https://wiki.whatwg.org/wiki/MetaExtensions
http://microformats.org/wiki/Main_Page#Specifications
http://microformats.org/wiki/Main_Page#Specifications
http://microformats.org/wiki/Main_Page#Specifications
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/RDF/

Stylesheet and Transform Languages

There is a single stylesheet language and a single transformation
language for the web.

• CSS - https://www.w3.org/TR/CSS2/

• XSL - https://www.w3.org/TR/xsl/

• Others: DSSSL and JSSS (Deprecated)

Page of 37 650

https://www.w3.org/TR/CSS2/
https://www.w3.org/TR/xsl/

Client-Side Scripting

There are a number of client side languages, though most are
connected to JavaScript!

• AJAX (XHR) - https://www.w3.org/TR/XMLHttpRequest/

• DOM Scripting - https://www.w3.org/DOM/

• Flex (ActionScript) - https://help.adobe.com/livedocs/specs/
actionscript/3/

• JavaScript - https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide

• VBScript - https://msdn.microsoft.com/en-us/library/
t0aew7h6%28v=VS.85%29.aspx

• Others: E4X, ECMAScript, JScript, JScript.NET and WMLScript
(Deprecated)

Page of 38 650

https://www.w3.org/TR/XMLHttpRequest/
https://www.w3.org/DOM/
https://help.adobe.com/livedocs/specs/actionscript/3/
https://help.adobe.com/livedocs/specs/actionscript/3/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://msdn.microsoft.com/en-us/library/t0aew7h6%28v=VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/t0aew7h6%28v=VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/t0aew7h6%28v=VS.85%29.aspx

Server-Side Scripting

There are a huge number of server-side languages to choose from.

• ASP - https://msdn.microsoft.com/en-us/library/aa286483.aspx

• ASP.NET - https://www.asp.net/get-started

• ColdFusion - https://help.adobe.com/en_US/ColdFusion/9.0/
Developing/index.html

Page of 39 650

https://msdn.microsoft.com/en-us/library/aa286483.aspx
https://www.asp.net/get-started
https://help.adobe.com/en_US/ColdFusion/9.0/Developing/index.html
https://help.adobe.com/en_US/ColdFusion/9.0/Developing/index.html
https://help.adobe.com/en_US/ColdFusion/9.0/Developing/index.html

• JSP - https://jcp.org/en/jsr/detail?id=245

• Perl - http://perldoc.perl.org/

• PHP - http://php.net/manual/en/

• Python - https://docs.djangoproject.com/en/2.0/

• Ruby On Rails - http://guides.rubyonrails.org/

• Others: Lasso, OpenLaszlo, Smalltalk, SMX, SSI and SSJS

Database Management Systems

There are four popular SQL-based relational databases worthy of
consideration.

• MS-SQL - https://docs.microsoft.com/en-us/sql/sql-server/sql-
server-technical-documentation?view=sql-server-2017

• mySQL - https://dev.mysql.com/doc/

• Oracle - https://docs.oracle.com/en/database/

• PostgreSQL - https://www.postgresql.org/docs/

• Others: Derby, MongoDB and SQLite

Page of 40 650

https://jcp.org/en/jsr/detail?id=245
http://perldoc.perl.org/
http://php.net/manual/en/
https://docs.djangoproject.com/en/2.0/
http://guides.rubyonrails.org/
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://dev.mysql.com/doc/
https://docs.oracle.com/en/database/
https://www.postgresql.org/docs/

Sandboxed Languages

The likes of Flash and Silverlight run in an independent sandboxed
environment.

• ActiveX - https://docs.microsoft.com/en-us/previous-versions/
windows/internet-explorer/ie-developer/platform-apis/
aa751972(v=vs.85)

• Flash - https://www.adobe.com/devnet/flashplayer.html?
view=gettingstarted

• Java - https://docs.oracle.com/javase/specs/

• Shockwave - https://helpx.adobe.com/director/topics.html

• Silverlight - https://docs.microsoft.com/en-us/previous-
versions/windows/silverlight/dotnet-windows-silverlight/
mt788662(v=msdn.10)

Page of 41 650

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa751972(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa751972(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa751972(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa751972(v=vs.85)
https://www.adobe.com/devnet/flashplayer.html?view=gettingstarted
https://www.adobe.com/devnet/flashplayer.html?view=gettingstarted
https://www.adobe.com/devnet/flashplayer.html?view=gettingstarted
https://docs.oracle.com/javase/specs/
https://helpx.adobe.com/director/topics.html
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/mt788662(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/mt788662(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/mt788662(v=msdn.10)

Server-Side/Web Server Settings

There are two server languages and one search engine language file!

• .htaccess - http://httpd.apache.org/docs/current/

• Robots.txt - http://www.conman.org/people/spc/robots2.html

• Web.config - https://msdn.microsoft.com/en-us/library/
ff400235.aspx

Page of 42 650

http://httpd.apache.org/docs/current/
http://www.conman.org/people/spc/robots2.html
https://msdn.microsoft.com/en-us/library/ff400235.aspx
https://msdn.microsoft.com/en-us/library/ff400235.aspx
https://msdn.microsoft.com/en-us/library/ff400235.aspx

Rich Internet Applications

Several frameworks will take your web applications to the desktop.

• Air - https://www.adobe.com/devnet/air.html

• Gears - http://gears.google.com/

• JavaFX - https://docs.oracle.com/javase/8/javafx/api/toc.htm

• Prism - https://developer.mozilla.org/en-US/docs/Archive/
Mozilla/Prism

• Others: Cappuccino, Curl and Titanium

Page of 43 650

https://www.adobe.com/devnet/air.html
http://gears.google.com/
https://docs.oracle.com/javase/8/javafx/api/toc.htm
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/Prism
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/Prism
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/Prism

Vector Modeling Languages

There are 5 popular modeling languages for both 2D and 3D graphic
and chart rendering.

• 3DMLW - https://en.wikipedia.org/wiki/3DMLW

• Canvas (HTML5) - https://developer.mozilla.org/en/docs/Web/
HTML/Element/canvas

• SVG - https://www.w3.org/TR/SVG/

• VML - https://www.w3.org/TR/NOTE-VML

• X3D - http://www.web3d.org/what-x3d-graphics

• Others: 3DML, 3DXML, SMIL, UML, VRML and XVRML  

Page of 44 650

https://en.wikipedia.org/wiki/3DMLW
https://developer.mozilla.org/en/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en/docs/Web/HTML/Element/canvas
https://www.w3.org/TR/SVG/
https://www.w3.org/TR/NOTE-VML
http://www.web3d.org/what-x3d-graphics

PostScript Format Languages

There are two web compatible PostScript formats for document
manuscripts.

• PDF - https://www.adobe.com/devnet/pdf.html

• XPS - https://msdn.microsoft.com/en-us/library/windows/
desktop/dd145058(v=vs.85).aspx

• Others: FlashPaper and OpenXML 

Page of 45 650

https://www.adobe.com/devnet/pdf.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145058(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145058(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145058(v=vs.85).aspx

Data Formatting Languages

All of the above languages formats of various different mediums.

• DocBook - https://docbook.org/specs/

• KML - https://developers.google.com/kml/documentation/
kmlreference

• MathML - https://www.w3.org/TR/MathML/

• OpenSearch - http://www.opensearch.org/Home

• PAD - http://pad.asp-software.org/spec/spec.php

Page of 46 650

https://docbook.org/specs/
https://developers.google.com/kml/documentation/kmlreference
https://developers.google.com/kml/documentation/kmlreference
https://developers.google.com/kml/documentation/kmlreference
https://www.w3.org/TR/MathML/
http://www.opensearch.org/Home
http://pad.asp-software.org/spec/spec.php

• Sitemap - https://www.sitemaps.org/protocol.html

• VoiceXML - https://www.w3.org/TR/voicexml20/

• Others: DOAC, DOAP, GML, GraphML, InkML, OpenMath, SISR,
SRGS, SSML and XMLTV

Document Schema Languages

There are two popular schemas for rendering markup languages on
the web.

• DTD - https://www.w3.org/QA/2002/04/valid-dtd-list.html

• XSD - https://www.w3.org/XML/Schema

• Others: DSD, RelaxNG and Schema XML

A Caveat about Comprehensiveness
While only languages that are well recognized and have a reasonable
level of support are provided in this list, it’s worth pointing out that
many others exist and could perhaps be worthy of inspection if you
feel the need to dive into something a little more obscure and
possibly interesting.

Page of 47 650

https://www.sitemaps.org/protocol.html
https://www.w3.org/TR/voicexml20/
https://www.w3.org/QA/2002/04/valid-dtd-list.html
https://www.w3.org/XML/Schema

Going Forward
Now that you are aware of the sheer multitude of options at your
fingertips, I’m sure you’ll want to run off and investigate these
languages further and perhaps learn another skill that you can add to
your resume (or further enhance the way you approach building a
website).

Just Starting Out?

If you are a beginner to the whole web design/development scene,
my general advice would be to stick to one of the languages I have
highlighted as recommended in each category (if you feel that
researching for yourself would just confuse you) and to follow
through each layer in order as it’s been listed to give you a general
roadmap to cover whatever you may wish to employ (HTML is a great
starter language).

Depending on the needs of your website, you can wrap additional
layers around it.

It’s worth making a note at this point that the order, breakdown and
recommendations provided are simply my interpretation of how the
task of finding a new language can be undertaken.

Factors That Can Affect Your Choice

It’s important (before we leave this discussion) to underscore the
general point that your choices for each layer should be made upon a
mixture of intended compatibility (so you know your choice will work
for your visitors), relevancy (if the language is current or deprecated)
and what you feel comfortable using.

Page of 48 650

Don’t Sweat It
Beginners to the world of web design/development should
remember that even the most experienced gurus of the web started
from the bottom and worked their way up one skill/language at a
time.

If you feel that all the choice at your disposal is too much for you,
simply follow my recommendations and you’ll not go far off course.
While all of the considerations and lists may seem like a lot to take in,
the great thing about coding for the web is that you only need a
couple of languages to get started. The rest of your knowledge can
evolve over time and evolve as you add more layers to your work.

Hopefully, you’ve been given the inspiration and pathway to perhaps
look beyond the conventional HTML, CSS and JavaScript towards
languages you might have never considered before, and I look
forward to seeing what comes of your learning a brand new exciting
web technology!

Sources:

• http://madebysofa.com/

Page of 49 650

http://madebysofa.com/

Semantic CSS3 Lightboxes
The rise of jQuery, MooTools, and JavaScript frameworks has given
many web designers a new lease on life, adding more unique
functionality into their sites.

Most notably among the various cool and interesting features you can
find being injected into a design is the humble lightbox (modal
window).

If you’ve ever come across a link or image which — upon clicking —
increases in size and where the rest of the screen gets "shaded" to
focus on the content, you’ll know what I’m talking about.

This tutorial aims to showcase a method of displaying content based
on the lightbox, which is web accessible and (excluding Internet
Explorer) will require no scripting at all. Sound like fun? Well, let’s
explore the subject further!

What About Scripting?
There’s a lot to be said about the benefits of using client-side scripting
for this. While we are certainly not in the cut-and-paste era that leads
to the kind of crimes against JavaScript many coders would like to see
punished, we do, to this day, still have an uncomfortable reliance on
scripts and frameworks in order for our websites to function.

Page of 50 650

Perhaps it seems a little hypocritical in this instance for me to critique
the use of scripting (as Internet Explorer users will require scripting
enabled to use this functionality), but like all things, we sometimes
need to compromise our code to ensure compatibility (especially
with that browser)!

Why Not Just Use JavaScript?
In the sense of the current scripting frameworks, I’m not going to say
that they are inherently bad because the likes of jQuery often
gracefully degrade with good levels of success — you guys can put
away the knives and flame-lit torches now!

However, the sad facts are that, due to security issues, widespread
abuse and the intrusive potential of client-side scripting, it’s quite easy
to understand why a large number of people do not (or cannot) make
use of scripting.

Therefore, a solution is required. And hopefully for you CSS3 fans,
you’ll find this simple, easy-to-use code to be a welcome
improvement.

Browser Support of this CSS Lightbox
To give you a quick introduction before we begin producing the
code itself, it’s worth mentioning that I’ve tried the code in a variety of
browsers and can say for sure that it works in all recent versions of
Mozilla Firefox, Google Chrome, Apple Safari and Opera (which is all
great news).

With a little bit of unobtrusive scripting that replicates the CSS3
techniques, it’ll also run smoothly within IE 6, 7 and 8.

The other fantastic news is that current test versions of IE9 support
CSS3, so this may very well be the best JavaScript-free solution there
is in the near future.

Page of 51 650

Internet Explorer is the usual culprit when it comes to lacking in
standards support.

Magic Markup!
To begin our quest for a much more compatible lightbox, the first
thing we need is some general HTML markup.

Much of the below won’t surprise you in the slightest as it’s pretty
standard. However, for this example, and to showcase how durable
this cool method is, we’ll produce three individual lightboxes.

One will be for an image, one will be for a block of scrollable content
and the final one will hold a YouTube video. What more could you ask
for?

To begin, let’s create the basics and have three fragment links which
will go to the correct lightbox (you’ll learn how a bit later on).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>
<meta http-equiv="content-type" content="text/html;
charset=utf-8" />
<title>CSS Lightbox</title>

</head>
<body>

<h1>CSS Lightbox</h1>
<p>You can use this fantastic solution to create lightboxes
for not just <a href="#image" title="Image
Lightbox">images but rich, semantic <a href="#content"
title="Content Lightbox">content and <a href="#video"
title="Video Lightbox">video's as well!</p>

Page of 52 650

</body>
</html>

Not much going on at this stage, a simple HTML document with extra
links.

So far, things are pretty simple; you have a heading and paragraph
with some links that, upon clicking, will currently do nothing.

The next stage in the process, however, is all important.

We need to add the container for each lightbox to appear within and
give them their appropriate values.

To give you an idea as to how each of the three lightboxes work,
you’ll need to examine (and add) the code into your source code
editor.

To better understand how it works, let’s talk about each item
individually.

<div class="lightbox" id="image">
<div class="w300 h60">

<img alt="Six Revisions" height="98" width="255"
src="logo.jpg" />

</div>
<p class="close"><a href="#" title="Close This Image
Lightbox">Close X</p>

</div>

Page of 53 650

Each lightbox you wish to provide will require a div element container
that contains the id attribute you wish to link too. That id will reference
what you’ll need to attach to the href anchor to start the navigation
process, not forgetting you’ll also need the lightbox class value on
each you include.

Are you with me so far? Good!

Once you have the container that references the lightbox, you’ll need
to include both a div (which will hold the lightbox content and will
have the width and height declared through class values like in the
above) and a paragraph with an anchor to act as the "shader".

Using the above source code, you should find yourself with a working
lightbox that contains an image. In this example, I used the Six
Revisions logo.

You can indeed link to any image of any size, taking into account the
viewport space available.

A Little Bit More About the "Shader"
To better understand how this gets its visual appearance, the
secondary div layer works independently from the close anchor
which filters in the background. It’s essentially a cascading/tiling effect
at work.

The first lightbox has appeared, and it contains an image.

Page of 54 650

If you look at any modern lightbox, the most common characteristic
you will see is that you have a semi-transparent layer which covers
over the rest of the page drawing focus to the lightbox content. Upon
clicking on this layer, it will return you to the page. This is the very
reason why each lightbox requires a closing anchor.

What Should the href Value Be?

The great thing is that you could even link the href to another lightbox
if you wanted it to do something other than close (using the null
fragment link).

What Can the divs Contain?
As for what’s inside the div, it’s entirely up to you. You can use any
block or inline elements (the lightbox will house any HTML element).

In the first example, we had an image; let’s add some content within
the code:

<div class="lightbox" id="content">
<div class="w60p h400 scroll">

<h2>Your Content Goes Here!</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Praesent quis felis suscipit tellus euismod varius quis ut nibh.
Curabitur in ante nunc, vitae venenatis dui. Phasellus egestas
ipsum in ipsum suscipit volutpat. Etiam eu nibh eros. Sed
dolor ligula, tincidunt vitae elementum vitae, pharetra vitae
eros. Cras risus lectus, aliquam vitae condimentum id,
feugiat eu nisi. Cras eu sem erat, eget ultrices enim.
Suspendisse feugiat fringilla massa at convallis. Quisque
tincidunt, diam quis facilisis volutpat, purus orci rutrum leo,
id dapibus tellus ante vel mauris. Quisque posuere, tortor in
laoreet hendrerit, ipsum sem molestie nunc, et ultrices erat
nulla sed dui. Donec sit amet mi sapien. Maecenas
fermentum nulla eu ligula dictum id elementum nisi
commodo. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. In ac massa quam.
Suspendisse nibh nibh, condimentum a porttitor a, placerat

Page of 55 650

in lorem. Sed sit amet elit eget magna condimentum
posuere volutpat a neque.</p>
<p>Sed dignissim viverra neque, sit amet lobortis elit luctus
ac. Proin placerat varius quam eu molestie. Pellentesque vel
ante quis metus auctor convallis. Duis mattis risus ac tortor
luctus in semper sem fringilla. Vestibulum consectetur iaculis
risus vel rutrum. Nam scelerisque gravida felis quis egestas.
Mauris vehicula nisl quis felis bibendum nec placerat neque
dictum. Donec erat tortor, venenatis id consequat ut, dictum
nec enim. Ut ultrices eros vel diam pulvinar aliquam.
Phasellus non nisi vitae ligula imperdiet dapibus eleifend sed
neque. Morbi gravida dignissim turpis eu auctor. Morbi
pellentesque urna vitae nunc dictum elementum. Aliquam
erat volutpat. Aenean urna nibh, pretium ut accumsan ut,
luctus eget nibh. Nulla sollicitudin fermentum turpis eget
rutrum. Integer dignissim dui turpis. Morbi metus libero,
suscipit blandit dignissim aliquam, sodales non mi. Proin id
augue odio, sit amet gravida mauris.</p>
<p>Proin a dignissim orci. Nam nec urna nisi, in blandit
lorem. Nulla cursus ornare rhoncus. Nunc lectus orci,
tristique et aliquet sed, venenatis et felis. Nullam sodales orci
at est pharetra nec aliquam risus scelerisque. Nullam varius,
nisi ut sagittis scelerisque, nulla mauris tempus magna, quis
pellentesque sem erat a diam. Cras lectus est, dictum ut
consequat ut, adipiscing sit amet sapien. Curabitur tincidunt
varius gravida. Quisque augue sem, commodo sed molestie
venenatis, cursus vehicula lorem. Praesent scelerisque, tortor
a euismod malesuada, ipsum ligula semper odio, ultricies
molestie sapien metus condimentum felis. Vivamus
hendrerit gravida interdum. Fusce at purus eu orci laoreet
lobortis. Aliquam cursus mi at tellus fringilla dictum.</p>

</div>
<p class="close"><a href="#" title="Close This Content
Lightbox">Close X</p>

</div>

Page of 56 650

For all whom understand the value of dummies, some Lipsum content
is added.

Add a YouTube Video

And to round things off even further, let’s add a YouTube video into
the mix:

<div class="lightbox" id="video">
<div class="w640 h386">

<object type="application/x-shockwave-flash" width="640"
height="385" data="http://www.youtube.com/v/
bsGEWHNJ3s8"><param name="movie" value="http://
www.youtube.com/v/bsGEWHNJ3s8" /></object>

</div>
<p class="close"><a href="#" title="Close This Video
Lightbox">Close X</p>

</div>

Page of 57 650

Video on demand, that’ll work in the lightbox too! Pretty cool isn’t it?

At this stage, we have completed the entire HTML file that this
demonstration will use.

If you want to preview the results in your web browser, you’ll notice
that as well as the heading and paragraph, there will now be the three
pieces of information on the page (the image, the content block and
the video), each with a "Close" link right below it.

Right on :target
At this stage, you’re probably wondering how we’re going to ensure
that only the right content appears when it’s needed. And that’s a
good question! We are going to use a cool CSS3 pseudo-selector
called :target (which styles based on the anchor).

Perhaps you’ve come across the :target selector before, perhaps not.
Basically, it cleverly allows you to apply specific style to an element if
its id matches the fragment identifier, which is the hash (#) symbol
followed by text usually found in page bookmarks. For example:
index.html#content (you’ll see it in the address bar).

So, without any further ado, it’s time we began formatting our
lightbox to perform the required task whenever this fantastic selector
is activated.

You now know why we give the three links in the first piece of code
those unique URLs (and gave each div a matching id).

Page of 58 650

Fragment links are best indicated by the # (hash) character at the end
of a URL.

For the following piece of code, I’ll provide everything you need
using a style element within the <head> of the document.

Generally, this is considered bad practice because all CSS styles
should be separated from the structure. However, as this is simply an
example and it works unobtrusively, you can easily place all of the
stylistic code in an external file. For simplicity, I’ll keep it in-line.

To begin, we’ll start by adding in the easy-to-follow snippets of code
such as removing the padding and margins from the document. Also,
we’ll hide the lightboxes off-screen until they’re required using some
absolute positioning and negative margins.

<style type="text/css">
html, body {

height: 100%;
overflow: hidden;
width: 100%;
margin: 0;
padding: 0;

}
body { overflow-y: auto; }
.lightbox {

left: -999em;
position: absolute;

}
</style>

Note: It is entirely possible for you to hide your three lightboxes when
they’re not in use using the property display: none. However, as this
can affect how some screen reading software will interact with your
page, I’ve used negative positioning to get the same effect.

Page of 59 650

With lightboxes offset, things disappear.

Upon refreshing your browser at this stage, you’ll notice that the three
previously visible lightboxes will be hidden, which is great.

However, when you click on the links, nothing happens! Don’t worry,
your lightbox isn’t broken.

All we need to do is add in the code to activate the two layers (the
“close this” lightbox anchor, that gives the fade effect and the lightbox
content itself).

.lightbox:target { bottom: 0; left: 0; right: 0; top: 0; position:
absolute; }
.lightbox:target .close a { background: rgba(0, 0, 0, 0.75); bottom: 0;
left: 0; right: 0; top: 0; position: absolute; z-index: 1; }
.close span { color: #FFFFFF; font-size: 2em; text-indent: 0; position:
absolute; right: 0.5em; top: 0.5em; }
.close {text-indent: -999em;}

Keeping things simple, the above code will span the lightbox to every
corner of the browser viewport using absolute positioning.

The second line of code will reinforce this code on the anchor itself
and will give it a z-index (for priority over the other stuff on the page)
and a background which makes use of opacity in browsers that
natively support CSS3 alpha transparency.

Page of 60 650

The third line will use the span element on the "close" button to give it
some emphasis for people to know that clicking in the anchor closes
the lightbox.

The last line will hide the text in the faded section (for full effect).

Note: It’s worth pointing out that if your content scrolls and you wish
the lightbox to follow the scroll action, you can replace position:
absolute with position: fixed, however IE6 will not support it. For the
example, I’ve used absolute positioning for simplicity and to
showcase its potential usage.

Now when you click on a lightbox link, the transparency effect
flourishes.

If you refresh your browser with the above code, you’ll notice upon
clicking any element that you get that amazing faded effect which will
span the entire content. And you should also have a neat little "X"
button in the top-right corner just to help reinforce the effect upon
clicking outside of the lightbox.

The problem now is we need to get the lightbox contents itself
positioned correctly and looking great on the screen.

Page of 61 650

So below, you’ll find the last bits of CSS to align the content and offset
it based on the width of the contents specified.

.lightbox:target div { background: #FFFFFF; position: absolute; left:
50%; top: 50%; z-index: 99; }
.w60p { margin-left: -30%; width: 60%; } .w300 { margin-left: -150px;
width: 300px; } .w640 { margin-left: -320px; width: 640px; }
.h60 { height: 60px; margin-top: -30px; } .h400 { height: 400px;
margin-top: -200px; } .h386 { height: 386px; margin-top: -193px; }
.scroll { overflow-y: scroll; padding: 0 1em; }

If you refer back to the HTML code, you’ll see that each lightbox
container has class values such as w300 (for width 300px) or h400 (for
height 400px) or w60p (for width 60%).

The values for each lightbox were simply calculated by measuring the
width and height of the contents required and then setting the
container width and height to match the dimensions.

Take for example the image we used: As that had specific width and
height needs, a specific width and height was applied to the lightbox
container, and for each, a negative margin for half that value was
given to give it accurate centering.

Note: You may have noticed that a scroll class was also added to
match the width and height classes for each lightbox.

Simply put, if you have lots of content within the container and you
give it a fixed width and height, the scroll mechanism will allow it to
overflow with scroll bars attached. Lovely!

Page of 62 650

Adding the next bundle of code will properly align the lightboxes
content.

Now try refreshing the page again and — Voila! — just like magic,
whenever you click one of the links, its content will load in a
container, in the center of the screen.

And the fantastic thing is, it will look and function like any other
lightbox. Clicking inside the lightbox will act normally, but clicking
outside of it will restore the main screen (and thereby hide the
lightbox contents as they’re not the fragment).

If you use Firefox, Chrome, Safari or Opera, this code will work
perfectly and is a 100% pure CSS way of implementing a lightbox.

But for Internet Explorer, we (as usual) have compatibility issues to
deal with!

Tip: Just imagine what you can do with these target lightboxes: You
could have anything from the content shown above, right through to
setting the width and height of the container to 100% and have a
literal different "page" appear with overflow enabled on a single page
web design. Woot!

Page of 63 650

Compatibility Crisis
Without going into a great deal of detail, the below JavaScript code
has been produced to deal with Internet Explorer’s lack of support for
:target (this could well be the first effective and simple solution for this
issue).

As with the style, I’ve attached the content inline using <script> tags in
the header, but it’s entirely graceful and can appear in an external file.

As long as the script is placed below the <style> element, you
shouldn’t encounter any issues in regards to the emulation of the
code.

<script type="text/javascript">
<!--
/*@cc_on @if (@_jscript_version > 5.6)
 function bootup(){

var tds = document.getElementsByTagName("a"); lightbox();
for(var x=0; x < tds.length; x++){tds[x].onclick = function()
{setTimeout(lightbox, 1);};}

}
function lightbox(){

var counted = document.getElementsByTagName("div");
for(var x=0; x < counted.length; x++){ if
(counted[x].className == "boxfocus") { counted[x].className
= "lightbox"; } }
if (location.hash.substr(1) == "") {} else
{ document.getElementById(location.hash.substr(1)).className
= "boxfocus"; }

}
window.onload=bootup;
@end @*/
// -->
</script>

Keeping the above code as simple as possible, it makes use of
conditional comments (for JavaScript) to ensure you are using Internet

Page of 64 650

Explorer (hence why it references Jscript) thereby ensuring the code
will not interfere with good browsers which render correctly.

When IE is verified, and the page loads, the bootup function monitors
whenever an anchor is clicked.

When this event is triggered, the lightbox function is activated and it
simply applies a set of classes to the div that matches the hash (#) in
the address bar (fragment link), while restoring all other lightbox
instances back to the default.

Essentially it says "You’re using IE? OK. You clicked a link or loaded a
page? OK. The link clicked references a lightbox? OK, let’s set that in
motion and reset any others which may be active".

If you’re not too JavaScript-savvy, it may not make a lot of sense, but
the code requires no user maintenance and if you use the code, you’ll
just have to trust me that it’ll do the job. Except for those classes to be
applied, which have the alternative to the :target stuff, we’ll need to
add these into the style in the header.

And to overcome IE’s lack of opacity support, we’ll add a transparent
repeating PNG image in its place.

.boxfocus { bottom: 0; left: 0; right: 0; top: 0; position: absolute; }

.boxfocus div {background: #FFFFFF; position: absolute; left: 50%;
top: 50%; z-index: 99; }
.boxfocus .close a { background-image: url('trans.png'); bottom: 0;
left: 0; right: 0; top: 0; position: absolute; z-index: 1; }

Those of you with eagle eyes may have noticed that the properties of
the boxfocus classes, which sit in place of those using the :target
pseudo, contain mostly the same properties and values as their
counterparts. So you may well ask: Why not group them together?

While it may seem like a smart idea to reduce repeating code,
unfortunately the default behaviour for IE and other browsers is that
unknown or invalid code (as it would appear to IE) should be totally
ignored and deleted. Which means, if grouped, it wouldn’t work, so
we need the repeated CSS as a separate entity.

Page of 65 650

With a bit of caring JavaScript, Internet Explorer will work like any
other browser.

If you now refresh the page again and open it in Internet Explorer, you
will find that the lightbox should now work properly in that browser.

It may not be a perfect solution to require extra CSS and some
conditional JavaScript to work the mojo, but alas, this isn’t a perfect
world, so we must use it to keep things as compatible as possible.

On the bright side of things, Internet Explorer 9 has full support for
target so in the future, none of that extra code will be needed.

Page of 66 650

Setting Standards
And on that note, the example is complete.

• It’s totally semantic: with div containers and the use of any HTML
elements you wish within the container

• It’s accessible: it’ll work with screen readers

• It’s not as dependent on scripting as the jQuery solutions and
you can bookmark their behaviour

• And — all things considered — it’s more graceful in that the
future looks good for the selectors’ widespread browser
support without the need of any scripting

Get Involved with CSS3. Please.
Hopefully this tutorial will inspire you to get involved in testing
modern standards like CSS3 because many of these elements already
have basic native support.

While there is a real need at this time to make things gracefully
degrade (and this option certainly can achieve that), it’s worth
highlighting that the potential for the :target pseudo-class goes far
beyond lightboxes: It could remove the future need for JavaScript in
single-page websites, content swapping, and other process-intensive
functions.

While the need for workarounds (like the JavaScript we needed to
use) won’t disappear overnight, the future of web standards is pretty
bright!

Sources:

• https://en.wikipedia.org/wiki/Modal_window

Page of 67 650

https://en.wikipedia.org/wiki/Modal_window

Problems Using Web Validation
Services
Amongst the basic skills that fledgling designers and developers
should know is the art of website validation. Website validation
consists of using a series of tools such as W3C’s Markup Validation
Service that can actively seek out and explain the problems and
inconsistencies within our work.

While the use of such tools has benefits (in the sense of being an
automated fresh pair of eyes), a worrying trend of either over or
under-dependence keeps rearing its ugly head.

This article aims to underpin the inherent issues of validating your
websites through automated web services/tools and how using
these tools to meet certain requirements can miss the point entirely.

Current Practices
Before we begin critiquing the valiant efforts that our noble code
validators undertake (they have good intentions at least), it’s
important to note that with all things in life, a balance must be struck
between the practical application of validation and common sense.

We live in a modern era of enlightened thought where web standards
have become a white knight, always charging towards slaying code
which fails to best represent our work.

But while current practices actively request and promote using these
validation tools, no web-based tool is a substitute for good judgment.

Page of 68 650

The above won’t validate, but it’s acceptable if there’s no alternative.

Not Using Valid Code
The case for under-dependence can be seen by examining the Alexa
Top 100 sites and using some basic W3C validation tests.

The eye-watering number of errors these popular sites produce
(which escalate into the hundreds) is rather unsettling for some.

The problems for those ignoring validation altogether has been well-
documented to the detriment of end users (as has the justification for
following web standards) and as ignoring validation entirely makes
you as guilty as those using it as a crutch, it’s worth recommending
not to forsake these tools even with their shortcomings.

Page of 69 650

Amazon's front page doesn't validate, but it doesn't mean they don't
care.

Blindly Following the "Rules"
The case for over-dependence is something we need to worry about
too. Those who form drug-like addictions to making everything
validate or meet a certain criteria just to please an innate need for
approval are on the rise.

While ensuring your code validates is generally a good thing, there
are professionals who take it to such an extent that they resort to
hacking their code to pieces, ignoring new and evolving standards or
breaking their designs just to get the "valid" confirmation. Quite a
price for a badge. And there are even people who think validation
automatically means everything’s perfect, which is worse.

Page of 70 650

There are a lot of tools, be wary about which you rely upon.

Context is King
The thing about validation tools that beginners (and some seasoned
professionals) often overlook is the value of context.

The most common problem that validation tools encounter can be
summed up in the sense that they are only machines, not humans.

You see, while checking if the code you wrote is written correctly, on
the surface, may seem like a simple task, that sites meet disabled
users’ needs, or that text on the screen is translated properly — the
very obvious truth (for those who understand the mechanics
involved) is that the complexity of how humans adapt cannot be
replicated effectively.

Page of 71 650

What does this design say to a machine? Nothing! It only sees the
code and that's it.

You Can Make Decisions That Robots Can’t
If you’ve seen the "The Terminator" movie, you probably have a
mental image of a not-too-distant future where machines can think
like humans and therefore make decisions based on adaptive thought
processes, such as being able to intelligently and emotively know
what makes sense.

But unlike that film, the levels of which such tools can understand
context and meaning (beyond what’s physically there) simply doesn’t
exist today—though that’s probably a good thing as we don’t want
the W3C validator going on a rampaging killing spree against <blink>
tag users, right?

Page of 72 650

There may be a time where machines are as smart as humans, but
that's not today.

Code Validation
The most notable form of code validation in use today is that of the
W3C HTML and CSS validators.

The level of obedience from some designers and developers to
ensure their code validates is best reflected in the way many websites
actually proclaim (through the use of badges) to the end user that
their code is perfect (possibly to the point of sterility).

Proclaiming the validity of your code doesn't mean what you've
produced is perfect.

Page of 73 650

This reminds me of the way software developers proclaim awards
from download sites as justification to use their product. As I’ve
mentioned previously, however, the W3C validator (despite its
association) is not perfect.

Failing Because of Future Standards
It’s an established fact that the W3C validator not only examines the
structure of your site but the elements or properties themselves
(though they don’t understand semantic value!).

The key issue with such due diligence from these tools is that
elements which are not recognized (such as those of upcoming
standards like CSS3 or equally valid proprietary extensions) are often
misinterpreted by developers as "unusable" or "not approved" and
therefore get rejected.

Taking Stuff Out For The Sake of a Badge
It seems rather amusing to me that people are willing to omit the
value of somewhat acceptable but non-standard code — CSS3
attributes specific to particular browsers, for example — to satisfy the
validators, like they’re trying not to anger the Tiki gods.

What ends up happening is the validators themselves make it seem
like legitimate practices which defies convention are automatically
wrong, and this results in a strange psychological condition in which
people too quickly limit their own actions for the sake of a machine
(or the ideology it provides).

While it makes sense not to use deprecated/future-standards code,
validators simply can only test against what they know.

Page of 74 650

Nothing says: "I want approval" like these well-known badges of
honor from the W3C.

It should be made quite clear that people who proclaim HTML and
CSS validation on the page are doing so to make themselves feel
better. Unfortunately, none of your users (unless you cater specifically
and strictly to web designers and developers) are likely to know what
HTML even is, let alone understand or trust what the fancy validator
badge is telling them!

Web Accessibility Validation
If you want a case where validators totally miss the point and where
their limited testing ability is abused (to proclaim the work which is
being tested against is complete), you need look no further than the
accessibility validation services like Cynthia, the now debunked
"Bobby" and their kin.

One key issue with validators are that they can only test against what
they can see (in almost all cases this only accounts for source code).

While some of the issues in WCAG can be resolved with some helpful
coding (like alt attributes on images), code doesn’t account for
everything in accessibility.

Cynthia "says" your site meets WCAG guidelines, but it's often missing
several points!

Page of 75 650

The Only Way to Test for Accessibility and
Usability is through People
Accessibility and usability are highly subjective issues that affect many
people in many different ways, and often the way code is presented
(or even the content) does not establish where key problems may lie.

Too often beginners actively use the checklist nature of these services
to claim their work is accessible on the basis that a validator covered
what it could (omitting the complexities which it cannot account for –
such as the sensory criteria and their inhibiting factors). This key lack
of understanding and the wish for a quick fix showcases that reliance
of these tools isn’t ideal.

How many validators can tell you how easy to read your content is?
How many of them run a screen reader over the top of your site to
denote the way a blind user may find your information?

While some factors can be mechanically replicated, the problem is
the tools primarily focus on code alone and therefore miss the bigger
picture (and those who rely on them also get caught up in this lack of
awareness).

Without the background knowledge of how such web or software
applications function, a scary number of people simply use them as
an alternative to properly learning what they’re doing.

Page of 76 650

Do you speak Latin? No? This content would pass as accessible,
readable and valid!

The state of accessibility tools is so bad that I advise people not to
use them in favor of proper human checking.

The myth that tools can do things at an equal skill level of a human is
far from the truth and while the W3C validators can be helpful,
accessibility tools are too biased to be credited.

Translation Troubles
Confusion (as denoted above) in relation to such validation tools
comes in many forms. Whether it’s the mystical messages the W3C
validator produces (which beginners may not understand), the lack of
fair warning that these tools should be used "as part of a balanced
diet", or that these tools are often much more limited in what they can
offer than you would be led to believe.

One of the more comical examples of automated tools going crazy
can be seen through translation tools such as those provided by
Babel fish or Google, which again proves that nothing is better than
humans.

Page of 77 650

Google Translate is popular amongst websites for giving "rough"
language translations.

One of the key elements of human languages is that words can have
more than one meaning (and deciding which instance is in use can be
tricky for machines – a case of context).

In accessibility, the issues of vision can be anything from total loss of
eyesight right down to a case of color blindness. Because of this, a
language translator will simply go for a literal meaning of the word
rather than the context in which it’s used which can reduce your
content into a scrambled illegible mess which doesn’t help your
visitors (especially if they have learning difficulties).

While of course translation tools aren’t code validators, they do in fact
perform a similar service. By taking a known list of criteria (whether
code, words or something else), they attempt to check that
something accurately portrays what it’s intended to.

If, however, you use something it doesn’t expect (like a new word in
translation tools or a new property in the W3C validator), it will report
it as a failing on your behalf.

Such reliance on validation tools for "perfect" results is therefore
unjustified and can limit yourself to the detriment of your audience.

Page of 78 650

A Translation Exercise to Test the Idea
If you take a block of content from a website, paste it into Google
Translate, translate it to another language, and then translate it back
into English, you’ll see for yourself how badly these validators of
content conversion are at the job. It can give you hours (if you’re really
that much of a geek) of comedy in a few sessions!

See how the same sentence has been wrongly translated? It's not
uncommon!

The Silver Bullet
Knowing that validation tools are far from perfect is an important
lesson to learn. Many people assume that such tools are an all-
knowing oracle that accounts for everything your users or browsers
may suffer.

While it’s wrong to say that these tools aren’t useful, it’s important to
understand that the validation tools should not be used as a
guarantee of accuracy, conformance or accessibility (in your visitor’s
best interests).

A valid site should never be achieved if it sacrifices the progression of
web standards, unjustly acts as a badge of honor or attempts to justify
the end of the build process.

Page of 79 650

Knowing how and when to use code and the difference between
right and wrong is a tough process we all undergo during our
education.

The truth about validators is that sometimes being invalid is the right
thing to do, and there are many occasions where a "valid" website is
nowhere near as valid as you might like to think it is in terms of code
semantics, accessibility or the user experience.

I hope that all of this will serve as a wakeup call to the generation of
coders who either ignore or abuse validation services. These tools are
not a silver bullet or a substitute for being human!

Sources:

• https://validator.w3.org/

• https://www.alexa.com/topsites/countries

• http://venturas.org/badges

• http://jigsaw.w3.org/css-validator/

• https://www.st-andrews.ac.uk/itsold/web/accessibility/
cynthia_validator.shtml

• https://www.lipsum.com/

• https://translate.google.com/

Page of 80 650

https://validator.w3.org/
https://www.alexa.com/topsites/countries
http://venturas.org/badges
http://jigsaw.w3.org/css-validator/
https://www.st-andrews.ac.uk/itsold/web/accessibility/cynthia_validator.shtml
https://www.st-andrews.ac.uk/itsold/web/accessibility/cynthia_validator.shtml
https://www.lipsum.com/
https://translate.google.com/

Sexy Tooltips with Just CSS
Providing supplementary information about potentially complex
elements of a user interface is a central part of any website designer
or developer’s workflow in creating usable and accessible websites.

One of the most common mechanisms for providing extra details
beyond what you can see on the page is the tooltip (a design pattern
for showing tips about a particular element on a screen).

While many innovative solutions exist using CSS and JavaScript (with
and without JavaScript frameworks like jQuery), it’s sometimes useful
to look towards new technologies to examine the impact they may
have on our current techniques.

Thus, we’re going to look at how using the evolving CSS standard can
enhance some lovely cross-browser tooltips.

Tooltips are Terrific!
Whether you need to explain an abbreviation or acronym, to define a
word or if you simply want to give additional details based on what
someone hovers over, tooltips provide a simple but effective solution.

From the little yellow block of text that appears over elements such as
images with a title attribute (or the alt attribute if you’re unfortunate
enough to use Internet Explorer), right down to the CSS and script-
powered solutions that exist, they’re fantastic devices that
unfortunately seem to get little interest from the design community.

Page of 81 650

Most browsers have a default style of tooltip, though it’s not very
pretty.

Leveraging Progressive Enhancement in Tooltips
As standards rapidly evolve and support for new techniques appear
within browsers on a more consistent basis, the advances of CSS
allow us to produce tooltips (which serve as a replacement for the
somewhat boring browser defaults as shown in the image above) to
a brand new level of detail and beauty.

If you already use a jQuery-powered example — fear not! — there are
still many things JavaScript can accomplish which CSS cannot (like
adding a delay on when tooltips disappear), but highlighting the ways
we can use CSS to better equip our designs may inspire you to create
some beautiful solutions of your own, outside of tooltips.

Page of 82 650

There are many existing solutions for tooltips you can choose
between.

What We’re Going to Make
In this example, we are going to be producing a pure CSS tooltip
mechanism that is aesthetically enhanced using CSS3 (rather than
using it to achieve some higher purpose).

What this means is that it will work on browsers that don’t support
CSS3 (such as Internet Explorer 8 and below) — it just will not look as
pretty. This concept is known as progressive enhancement.

Subtle effects such as the colors, fonts, imagery and border you give
your tooltip may differ depending on the end user’s machine (such as
their browser, installed fonts or monitor contrast).

CSS3 Extras

Using simple yet effective extras like the now well-established
border-radius property and the box-shadow property will give what
used to be a generic-looking "boxy" popups a new and more
sophisticated visual appearance.

Page of 83 650

Under the Hood
As always, it makes sense to get some basic code down in your
chosen source code editor and we shall begin with the HTML source
code for our examples.

Different Types of Tooltips

For the benefit of giving you enough ideas to build upon or
implement directly into your own work, we shall produce five
different tooltips.

Each will look very similar in order to maintain a standardized
appearance, but you should feel free to experiment further and
continue evolving these techniques.

You can see how pretty a tooltip can actually be, much better than
the default!

Cross-Browser Compatibility

This mechanism should work across all browsers, however, if you feel
the need, you can tweak it to better suit your own requirements.

Page of 84 650

Basic Markup
On the code block below, we have a generic XHTML 1.0 template
with the usual <head> elements that are required.

As we add the CSS into the design, it’s worth pointing out right now
that for the purpose of this tutorial, the CSS will be embedded into the
document using the <style> tag.

Separating structure from style is (of course) important, I highly
recommend putting your CSS into a separate stylesheet in production
usage.

For ease of discussion, I decided to place the styles inside the HTML
document.

I also highly recommend that if you feel that adding jQuery or other
JavaScript enhancements may assist the usability of this lovely eye
candy, feel free to do so!

HTML Markup

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>
<meta http-equiv="content-type" content="text/html;
charset=utf-8" />
<title>ToolTips Example</title>

</head>
<body>

<h1>Examples of CSS ToolTips!</h1>
<p>Here are some examples of a <a class="tooltip"
href="#">ClassicThis is just an example
of what you can do using a CSS tooltip, feel free to get
creative and produce your own!, Critical<span class="custom
critical"><img src="Critical.png" alt="Error" height="48"
width="48" />CriticalThis is just an example of
what you can do using a CSS tooltip, feel free to get

Page of 85 650

creative and produce your own!, Help<span class="custom
help"><img src="Help.png" alt="Help" height="48" width="48"
/>HelpThis is just an example of what you can
do using a CSS tooltip, feel free to get creative and produce
your own!, <a class="tooltip"
href="#">Information<img
src="Info.png" alt="Information" height="48" width="48" /
>InformationThis is just an example of what you
can do using a CSS tooltip, feel free to get creative and
produce your own! and <a class="tooltip"
href="#">Warning<img
src="Warning.png" alt="Warning" height="48" width="48" /
>WarningThis is just an example of what you
can do using a CSS tooltip, feel free to get creative and
produce your own! CSS powered tooltip. This is
just an example of what you can do so feel free to get
creative and produce your own!</p>

</body>
</html>

Within the above code, you will notice that we have a heading (<h1>)
element (nothing special so far) and a paragraph (<p>) of text which
contains some anchor (<a>) elements (with a class value of tooltip).

Why Use Anchor Tags for Tooltips?
The reason why anchors rather than abbr, dfn or another element like
span is used at this level is due to IE6’s total lack of support for
the :hover pseudo-selector beyond anchor elements.

Therefore, for compatibility reasons I recommend using <a>, though if
you don’t like IE6, you can change it.

Each anchor also contains a span with the content of the tooltip.

Page of 86 650

With some basic HTML code, things don't look or function as they will
end up.

The anchor effectively acts as a point of reference for the hover effect
to occur within, and as we add style into the document, the content
of the spans will be hidden off-screen until they’re required.

Each span in this example either has a class value of classic (denoting
a general tooltip) or custom (with critical, help, info or warning to
match denoting the color scheme to use).

Those using the custom style also have a couple of bonus features
like the em element (denoting the overview text) and an image
proceeding it (which acts as the icon for the tooltip, you can even use
your own images).

Basic CSS
As you will now have the HTML on the page, it’s time we make these
tooltips do their job (rather than spanning the page as normal linked
text).

By adding in the code block below into your <head> element, you
will give each link containing a tooltip a nice dotted underline
(differentiating it from normal links which typically have a standard
solid underline) and a help cursor (again for visual differentiation).

It’ll also remove the outline and set the color (so it feels less like a link
and more like a general hover element).

The second bit of code simply hides the tooltips off-screen until their
needed. Easy as pie!

Page of 87 650

Basic CSS Styles for .tooltip Class

<style type="text/css">
.tooltip {
 border-bottom: 1px dotted #000000;
 color: #000000; outline: none;
 cursor: help; text-decoration: none;
 position: relative;
}
.tooltip span {
 margin-left: -999em;
 position: absolute;
}
</style>

Web Accessibility Considerations
On a note about maintaining accessibility: the outline is removed
visually as the link is effectively redundant — it’s only included for the
purpose of compatibility with old versions of IE.

Therefore, the outline itself isn’t needed to show that the tooltip is a
clickable link unless you want it to be, in which case I advise removing
that bit of code.

Also for the benefit of screen readers, the tooltip contents are being
moved using a negative margin rather than using display: none or
visibility: hidden as some screen readers may ignore the content –
which would be bad news for screen reader users.

It's amazing what a bit of CSS can do; now the page appears ready to
host the tooltips.

Page of 88 650

CSS for Displaying the Tooltips
At this stage, hovering over the links will do nothing.

Soon we will have a functioning tooltip that will look about the same
through whichever browser you prefer to use, but for now, it’s time to
place the next lines of CSS code in below what you already have.

By adding in the code block that follows, you should have a
mechanism that works and displays the tooltips, though it will look
very bland and will have little to no appeal (visually) apart from the
fact that everything is contained within a box-like shape (which sets
the standard for future code to customize further).

CSS for Showing the Tooltips

.tooltip:hover span {
font-family: Calibri, Tahoma, Geneva, sans-serif;
position: absolute;
left: 1em;
top: 2em;
z-index: 99;
margin-left: 0;
width: 250px;

}
.tooltip:hover img {

border: 0;
margin: -10px 0 0 -55px;
float: left;
position: absolute;

}
.tooltip:hover em {

font-family: Candara, Tahoma, Geneva, sans-serif;
font-size: 1.2em;
font-weight: bold;
display: block;
padding: 0.2em 0 0.6em 0;

}
.classic { padding: 0.8em 1em; }

Page of 89 650

.custom { padding: 0.5em 0.8em 0.8em 2em; }
* html a:hover { background: transparent; }

Star HTML Hack Necessity
You may have noticed that the very last line of code above uses the
HTML star hack to apply a transparent background to IE6. Why was
this included?

Well, while testing the tooltip, I encountered a strange quirk where
the hover pseudo was not obeyed unless a background reference
existed!

A lot of CSS later, we have something that functions generally as a
tooltip!

With the above code in place, everything works and is visible on the
page. But it’s hard to read because there’s no color scheme that pulls
the contrast out from the page and that’s something we need to fix
right now to make them usable.

CSS for Giving the Tooltips Some Color
The following code will give each of the five styles of tooltip a color
scheme which fits the icon (if one exists).

Upon giving your page a quick refresh and hovering over one of the
links, you’ll see a pretty tooltip that looks and works equally across the
various web browsers.

Though as you will soon discover, there’s a bit more to the story still
to come!

Page of 90 650

CSS for Color Scheme

.classic { background: #FFFFAA; border: 1px solid #FFAD33; }

.critical { background: #FFCCAA; border: 1px solid #FF3334; }

.help { background: #9FDAEE; border: 1px solid #2BB0D7; }

.info { background: #9FDAEE; border: 1px solid #2BB0D7; }

.warning { background: #FFFFAA; border: 1px solid #FFAD33; }

With what you already have (as mentioned above), you’ll have
something a bit basic, but that looks good and does its job in giving
you a colorful tooltip that you can give your website design.

CSS3 for Progressive Enhancement of Sexiness
Before we leave the example, it’s worth bringing up CSS3 as we can
(literally) take the edge off our tooltips, making it feel a bit less boxy
using border-radius and give it a bit of extra depth using the box-
shadow property.

Because neither of these elements is globally supported, it won’t
work for every browser, but for those that it does work within, they’ll
look a lot sleeker and sexier!

Much better! A little style gives the tooltip a visually unique
appearance.

Add the below code into the .tooltip:hover span selector and refresh
the page.

The visual effect of the border, shadow and opacity will help lift the
tooltips from the page, and that may well make the information and
contrast a bit easier to read.

Page of 91 650

You’ll see that not only are the official CSS3 properties provided but
the Mozilla and WebKit proprietary extensions too.

It’s worth pointing out that this means your code may not validate
(even though it’s an acceptable bending-of-the-rules scenario), but
the experience benefit your visitors will get may well be worth the
lack of validation.

Additional CSS for Modern Browsers

border-radius: 5px 5px;
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.1);
-webkit-box-shadow: 5px 5px rgba(0, 0, 0, 0.1);
-moz-box-shadow: 5px 5px rgba(0, 0, 0, 0.1);

Using some CSS3 properties, we can improve upon the existing CSS
code.

Food for Thought
As this tutorial shows, it doesn’t take much in the way of visual eye
candy to give our readers a better experience.

While this style of tooltip may have been done before, adding
flourishes like image-based icons, CSS3 effects and perhaps the odd
bit of opacity (and typography) can help you go beyond a boxy (and
rather ugly or limited) tooltip to have something a bit more elegant
and pretty.

Page of 92 650

When using CSS, the key to any successful implementation is ensuring
the experience degrades gracefully and what you do implement is
done tastefully and with subtle enhancements.

Giving your website a few useful tooltips to notify users of the
meanings of certain terms or words, explaining a general concept
you talk about, or even to provide some meaningful alternative details
can not only give your content some added context but it may well
help your readers get more from the experience you offer them.

Perhaps the greatest thing the future of CSS offers us is a fresh
opportunity to restudy and rethink our craft to better meet our users’
needs. I certainly recommend taking this example’s opportunity to
look for other ways to give your content an added layer of
interactivity.

Sources:

• https://en.wikipedia.org/wiki/Tooltip

• https://en.wikipedia.org/wiki/Progressive_enhancement

• http://css-discuss.incutio.com/wiki/Star_Html_Hack

Page of 93 650

https://en.wikipedia.org/wiki/Tooltip
https://en.wikipedia.org/wiki/Progressive_enhancement
http://css-discuss.incutio.com/wiki/Star_Html_Hack

250 Quick Web Design Tips (Part 1)
As web professionals, we’re always looking for ways to improve our
knowledge and skills. Tips, tricks and checklists are often one of the
most underused yet potentially useful models of providing great,
quick and easy to follow pieces of useful information.

You may or may not know some of the tips below — and you may or
may not agree with everything listed — but hopefully it will give you
some ideas for your own sites or motivate you to create a checklist to
help cover your bases.

Perhaps a few items may even inspire you investigating a subject
further, and that would be pretty awesome too.

This is the first part of a 2-part series. In this first part, we will cover
planning, content creation, and design elements.

Planning and Getting Into the Web Design
Profession

Planning what your website needs to contain can help you scale the
project size.

One fundamental aspect of creating a website is the planning stage.
This includes things like looking for a domain registrar and hosting
package, seeking out inspiration for your design, building the
information architecture, and much more.

Page of 94 650

Getting your website’s purpose mapped out will help you better
write content (to match your needs) and more effectively create a
design that will retain the look-and-feel you want to put across.

Below are some tips and tricks which may prove useful when you’re
making decisions before putting your (or your clients’) website
together.

Picking Domain Names
1. Many people are used to seeing the www at the beginning of a
website address (e.g. www.sixrevisions.com). Ensure your website
functions both with and without this famous subdomain.

2. Reserving a subdomain called m (e.g. m.sixrevisions.com) for
mobile devices has become a common web design convention.
It’s cheaper than — and as widely recognized as — the .mobi top-
level domain (TLD).

3. Most of the non-technical general public tend to only
recognize .com, .net and .org. It’s worth checking the TLDs you
want are available before dedicating yourself to a brand name.

4. Avoid using dashes in your domain name. (e.g. sixrevisions.com
versus six-revisions.com).

5. Domain hacks like del.icio.us have become pretty popular, and
while they may be harder to spell, they can give you an awesome
alternative to a simple but unavailable .com address.

6. If you want to target a local audience, it may well benefit you to
purchase a country code top-level domain (ccTLD) in your own
country. Something like co.uk may be great for grabbing regional
visitors in the UK.

7. Remember that some ccTLD domains require you to be a
resident of a certain country. If you don’t live there, you could
forfeit the TLD as a violation of the registrar’s agreement.

8. WHOIS privacy can be a dicey affair when you allow your
registrar to put their details in place of your own. You run the risk
that you may lose the domain if a conflict occurs.

Page of 95 650

9. Domain auctions like Sedo can be a great place to get a domain
that’s already been taken. While it can be somewhat expensive to
pick up a rare domain, you might find yourself the owner of your
preferred domain name.

Web Hosting
10. When picking a website host, ensure that you check what you’ll
get in the package. Disk space, bandwidth, CPU usage and other
specified features may decide the cost you’ll encounter. If you
already have a web host, test their performance using these tools.

11. Beware of hosts proclaiming unlimited bandwidth or resources.
Everything in this world is finite and you may find yourself falling
short of contractual small print and fair use policies.

12. If you’re starting a website or service of your own, it pays to
start off with shared or grid hosting rather than a VPS or dedicated
because you won’t know how many visitors you will need to cater
for.

13. Free hosting for commercial use is not a good idea. If you plan
on having a commercial website, it makes sense to avoid the
intrusive advertisements and purchase some basic web hosting.

Development Platform
14. If you want to have a good testing environment that will run
PHP and mySQL on your own PC, install XAMPP. It’s quick, easy and
will help you get things running before you go live.

15. Unless you know what you’re doing and have the money to
finance the infrastructure, hosting your own website may not be
the best or most economical idea (as fun as it sounds).

16. Pick your development platform carefully as some products
(such as WYSIWYG editors) inherently produce less reliable code
than a classic text editor that allows you to write by hand.

Page of 96 650

Tools
17. You don’t need to rely on Adobe or Microsoft software to
create a fantastic website as there are lots of free and open source
products which can do the job without cost.

18. Ideas: GIMP, Inkscape, Dia, FileZilla, IcoFX, Audacity, Paint.NET,
Scribus, Eclipse, Skype, KeePass, Xenu Link Sleuth, Tweetdeck,
FoxIt Reader and Notepad++ are great free products for designers.
For more great open source products, read the article called 30
Useful Open Source Apps for Web Designers.

19. Finding a good selection of checklists and cheat sheets can
give the fledgling designer some quick, easy places to get advice
on how best to approach a task.

Project Management
20. Set yourself aside a decent workspace environment. The less
distractions your workspace has, the better off you will be in terms
of productivity.

21. Always have realistic expectations about how long a project
will take to complete. Rushing your work and releasing it "half-
baked" can cause issues — just look at Windows Vista.

22. Getting some decent time-tracking or project management
software is important. It’s far too easy to get distracted and lose
sight of the big picture if you’ve lots of small tasks to achieve.

23. To-do lists may seem inconsequential and rather trivial, but you
may find them useful in structuring all the various tasks you need
to deal with and setting yourself deadlines.

Learning
24. Always keep learning because there is no excuse in allowing
your education to lapse or become deprecated. You could keep
up to date with news through design blogs or perhaps learn a
new web language.

Page of 97 650

25. There are many fantastic web design books and magazines out
there. They also cover a wide range of subjects with ever-
increasing depth as a source of education they are second to
none.

26. Web resources like Six Revisions are great for learning new
techniques. While perhaps not as in-depth as books, many web
resources offer you useful and up-to-date advice on the web
industry.

27. Remember to verify anything you learn through a third party
resource. There’s an awful lot of outdated information out there
(like W3Schools) that could encourage bad habits.

28. Sites are beginning to teach classroom-style lessons and video-
based instruction classes (e.g. Lynda.com) on web design and
development. They can get pricey, but may be good alternatives
to a degree.

Specialization and Competitive Analysis
29. There are many sectors you can work in as a web professional
(web designer, UX, UI, front-end development, etc). You shouldn’t
restrict yourself to a core subject unless you know exactly what
you want to end up doing.

30. Whether you decide to become a Jack of all trades or a
specialist is entirely up to what you prefer. It’s worth noting that
there is enough work in the industry to cater to both work styles.

31. Investigate what your competitors are doing with their services
as you can learn so much from the mistakes or successes that
others have had — they can be a goldmine of ideas.

Learning About Your Target Audience
32. Research is the mother of all invention if you’re going to work
on any project. It pays to ensure what you’re planning will meet
the needs of the audience you’re trying to gain.

Page of 98 650

33. Always try to be inventive with what you create. There’s no
point cloning another successful website when you could improve
upon it to convert some of their existing user base.

34. If you plan to produce a blog or an informative website, ensure
that you know your subject. Trying to create a medical blog with
no knowledge is not a good idea. You should be passionate and
be well read about your subject matter.

35. Seek out the kind of people who might want to use the service
your planning and ask them what they would like to see in such a
website and what popular topics is worthy of inclusion.

Inspiration
36. If you’re stuck for ideas for what kind of site to create, browse
around the web looking for subjects that are popular. You could
serve a niche market where there’s existing demand.

37. Finding inspiration for a site can come from the most unlikely
sources. Watching movies or TV, taking a walk, or even talking to
your friends and family can help you get business ideas.

Handling Data
38. Deciding whether you need an SSL certificate or not depends
on whether sensitive personal details like credit cards or login
information will be processed. It may be worth buying one.

39. Handling your customer’s information is of critical importance.
Never store passwords as plain text documents and do what you
can to encrypt details that are stored in databases.

Conceptualization & Information Architecture (IA)
40. Creating a visual sitemap before you start building the website
can do wonders for your core structure. If you know what pages
you may need initially, you can plan the content ahead.

41. Certain types of websites require certain types of documents.
Most portfolio websites, for example, have a contact page. Seek
other likeminded websites to get required page ideas.

Page of 99 650

42. When in doubt, always do what works and the norm. There’s a
reason why certain types of websites succeed. It’s because they
follow conventional practices that visitors will adapt to quickly.

43. Concept sketches are useful for developing your ideas.
Sometimes a piece of paper or a napkin with some doodles can
assist you in turning what’s in your mind into a workable design.

44. Wireframes are a simple, underused method of planning and
plotting out an idea. You can create something as simple as basic
shapes, right down to mapping out your site structure.

45. Beyond wireframes, you could also consider a working
prototype when planning your site. Mocking up a quick and
simple website can eliminate potential feature flaws quickly and
easily.

46. Brainstorming is another fantastic but underused method to
evolve your business or website ideas. Picking a loose concept
and mapping related ideas to it can give quick but abstract results.

47. Some site owners write a business plan to scope out a project’s
evolution before it happens. If you find yourself too easily
distracted, it might prove to be a useful document to make.

48. Determine what kind of person you are, and the way you use
websites. It’s quite subjective, but provides a good grounding
point in conceptualizing how an idea can become a real product.

Miscellaneous
49. Products like EverNote or Microsoft OneNote provide you with
a great platform to gather and store research and ideas. Think of it
like a sketchbook you can turn to for inspiration.

50. Never give up. It’s so easy to think an idea has fallen flat, and
most people tend to move on far too quickly. Most ideas can
become what they’re intended to be with enough hard work.

Page of 100 650

Content Creation

Even something as simple as an About page should have purposeful
content produced.

Everyone keeps reiterating the same term over and over: "Content is
king" has almost become a mantra which writers of web copy sing
from the rooftops. And they’re right to do so!

Whether your content is provided in textual form, vivid imagery or
some beautifully implemented audio and video media, ensuring your
website’s content is up-to-scratch will help you turn visitors into
customers.

When you come to producing the content that will help visitors
understand what the website is about, the following tips may give
you some relevant advice to keeping your users hooked.

51. There is more to content than text. Providing polls, infographics,
or interactive elements that have content-based value can help
improve the interest and readability of on-page information.

52. People respond to engaging prose.

Page of 101 650

Copyright, Content Licensing and Legalities
53. If you’re intending to build for other people, ensure you have
some good solid contracts to work from. You don’t want to be
unprepared if the client refuses to meet their obligations.

54. Creating paperwork such as invoices, receipts of purchase,
questionnaires (for contract work) and other useful materials will
reduce your workload if you start doing freelance jobs.

55. Word of mouth constitutes a binding contract, though it’s
harder to prove you shouldn’t say you can or will do something
unless you fully intend to follow through what you state.

56. All services should have good terms of service, privacy policy
and copyright agreements. It’s important that your end-users know
what you expect from them (and that works in reverse)!

57. You don’t need to have a copyright statement on your website
(though it’s good as a reference). Ignorance of intellectual
property does not qualify as a valid excuse.

58. When deciding how to license your finished design, you may
want to check out creative commons or open source licenses;
they’re pre-written and flexible (which is great).

59. A cheap way of writing agreements or contracts for your
website is to examine others and then write your own based on it.
You can save yourself a lot of money in potential legal fees.

60. Avoid legal jargon whenever possible and simply state outright
what you want to say in an agreement. Your clients will be more
likely to read what you say if they can understand it,

61. If you write your own contracts, it might pay to have them read
over by a lawyer to get them as watertight as possible. Verifying is
often cheaper than having it custom written.

62. Accessibility statements aren’t as important as they used to be
(as being natively accessible is more of a requirement), but
providing one may be useful to your website’s audience.

Page of 102 650

Content Formats and Considerations
63. Get the hang of compression — whether it’s using GZIP for
content, caching for external files or squeezing extra bytes from
images and media. It will increase the speed of your website.

64. Consider the best image format for what you are trying to
achieve, while GIF makes for good basic animations, JPEG or its
less lossy friend PNG will be better for high-resolution photos.
Read The Comprehensive Guide to Saving Images for the Web for
more information.

65. Be careful as to what you use images to portray. Not everyone
can see images (like search engines) and this may present
readability problems if you use them in place of text.

66. When adding video, audio or graphics into your site, make sure
alternative content is available for those who cannot take
advantage of these mediums due to accessibility issues.

Images
67. Opacity in images is a tricky issue with Internet Explorer. There
are fixes for issues in IE6, but you should remember that only full
alpha transparency has issues, not single colors.

68. Your logo is one of the most important aspects of your website
as it’s what people will recognize you for. Therefore, it pays to
have a good, memorable one created for your brand.

69. While the favicon is one of the smallest graphics you’re likely to
encounter on a website, it provides a fantastically unique way of
gaining recognition in bookmarks and social networks.

70. Producing an Apple touch icon at 57×57 pixels can be useful for
users of the iPhone, iPad and iPod touch who can proudly display
your site in their home screens (using web clip).

71. There are loads of sites that provide free stock images, audio
and video if you’re not much of a pixel-pusher.

Page of 103 650

Content Writing
72. Even if you’re not an articulate individual, trying to ensure that
your spelling and grammar are correct should be at the top of
your agenda.

73. If you’re at a loss for what to write, taking a break or using one
of the many techniques to help remove writer’s block can prove
indispensable to the content creation process. See the Content
Strategy category for tips.

74. A simple way to reduce the complexity of content is to take
what you have and boil it down to 50%. It may seem a lot, but
reductionism can seriously help eliminate the waffle!

75. Writing your content before you start designing your website
can help you better approach the coding stage as you can pick
the right elements that describe your content’s value.

76. Content is king. If you sacrifice the quality of the content for the
design of the website, your visitors may likely hit the back button
in their browser and never return as a result.

77. Much of writing for the web is down to practice. Don’t be afraid
to start off small with the likes of Twitter or forum posts before
building up your credibility as a web content writer.

78. Making content fun and involving is important to being
successful. While dry humorless copy might get across the point,
being quirky will emote passion.

79. Never be afraid to ask for help and feedback or get colleagues
to proofread what you have to say. Often, a bit of critique will help
you become a better professional.

80. When linking to another website, ensure you notify the visitor
of how the target site relates to the content or element of the
website so they don’t end up at an undesired location.

81. Break your content down into easy to manage segments. Using
unordered lists, for example, can help increase the content
readability.

Page of 104 650

82. Fluff and poor quality marketing speak is unnecessary. Always
keep to the point and avoid redundant technical language. We all
hate junk and in the recycling bin it all belongs.

83. Ensure that what you say is factually correct. Citing references
will give your words added credibility.

84. Don’t plagiarize or steal other people’s content. If you find
people stealing yours, it’s worth taking the time to learn how to
send DMCA takedown notices and cease and desist letters.

85. When writing content of your own, simplicity is valuable. If you
can strike a balance between being informative and being overly
wordy, you could avoid wasting your reader’s time.

86. Don’t span long documents over multiple pages if you can
avoid it. Such practices can reduce the readability of content as
readers will be forced to break their natural flow to jump pages.

87. If you’re planning on having a blog, ensure that you state if
you’re reviewing something and have been paid to do so.

88. There are so many fantastic CMS solutions (i.e. WordPress). If
you find less technical people are going to contribute to a site you
make, they can be ideal in removing some complexity and
speeding up content production.

89. Consistency is important with everything you write.
Maintaining a core set of standards and values helps ensure
regularity.

90. Always try to put across information in a friendly and non-
aggressive tone. Being overly sarcastic or rude can lead to
arguments that can degrade the value of your content.

91. Feedback can be just as important in content writing as the
written material itself. Using blog comments, for example, can give
entertaining and potentially informative extra reading.

92. Write for people, not search engines. Your users are more
important than your Google PageRank.

Page of 105 650

93. If you plan on providing translated content for international
users, nothing beats a human translator. With that said, there are
some decent translation tools out there.

Multimedia Content
94. If you create a podcast for your website, a good compression-
to-quality ratio is 96kbs MP3 (for voice recordings). Large file sizes
are a pain, and at this level, you can save a lot of bandwidth.

95. MP3 is arguably the most compatible audio format around. If
you’re providing alternative formats like OGG or FLAC, then ensure
an MP3 version exists for more restrictive audio players.

96. Embedding Windows Media Player or Apple QuickTime into a
page may have problems if people don’t have the players
installed. Flash has a higher market penetration than both.

97. Automatically playing music is a sin — it’s annoying, so don’t do
it.

98. Remember that Flash-dependent components are not reliable:
People with vision and hand-mobility impairments limit them in
accessing a lot of Flash-based content.

99. If you are planning to provide content through email, keep
subscribers’ email addresses private (don’t use the CC feature
when sending out emails en masse).

100. Don’t spam or send out heavy streams of email – people hate
it.

Page of 106 650

Design Elements

Color is a critically important part of your design as it may invoke or
reflect emotion.

One of the most subjective parts of creating a website is its design.
Whether you’re looking at accessibility, usability, the user experience,
or even something as fundamental as the psychology of color, giving
your users the best possible experience with as little effort as possible
can prove tricky.

101. Your web design does not need to be pixel perfect. Every
device, platform and browser render things slightly differently but
that’s not always a bad thing if your site’s still usable.

102. If you are requesting users to sign up for a service on your
website, always keep the amount of required information to a bare
minimum. Keep things simple.

103. Keeping file sizes as small as possible is important for
improved page response times.

104. Mobile web designs should be simple. If you have less
content, no Flash dependence, a single column layout and a liquid
design, you should have few problems with visibility.

Page of 107 650

105. mobiForge has an excellent mobile web development guide
that is full of best practices and some useful guidelines to helping
make the mobile experience better for your end-users.

106. Don’t rely on fixed-width designs. Toolbars, sidebars, add-ins,
viewport sizes, window sizes, screen resolutions and many other
factors can affect the amount of real estate available to users.

Colors
107. Color can invoke a wide range of subtle psychological
influences over people. Knowing how to use color and various
contrasts may help you better engage with your audience.

108. Consider how people associate color with feelings: red for
hot, blue for cold, white with purity and clarity, black with darkness
and death, yellow with happiness and sunshine, etc.

109. Contrast is important when using colors. For certain people
like the color-blind, the ability to distinguish various shades may be
diminished and they may struggle to read content.

110. The idea of web-safe colors is relatively redundant due to the
way screens have evolved, but making sure your site is color
accessible for visual impairments is worthy of your consideration.

111. Color theory and harmony are important parts of design.
Understanding how such devices influence the way information is
perceived is worth studying.

Typography
112. Typography is an ever-increasing variable of importance within
web design. As the range of fonts that can be used within designs
increases, the legibility of those fonts becomes vital.

113. Producing a font stack is easy! Have your chosen font followed
by an alternative that looks similar, then its closest relation that’s
likely to be available, and finally the type (like serif).

114. Size is another variable of typography within design that you
should consider. The larger the scale, the more readable it
becomes and the increased attention it will receive.

Page of 108 650

115. Giving emphasis through styled italics, strength through bold
visual styles or underlying and striking through content can affect
the perceived importance design elements receives.

Arranging Design Elements
116. White space/negative space is a valuable commodity. Don’t
pack your design full of stuff! Having enough breathing space will
improve the readability of your design and help the reader "scan."

117. Scanning is the act of an end-user flicking through content on
your pages to determine the information they are looking for. The
ease they can do this will affect how they use your site.

118. Websafe typography is a big deal unless you embed a font
(which has legal implications). You can’t guarantee the end-user
will have any font installed, even common ones like Arial.

119. Organizing your information on-screen can be a tricky task.
Using conventions and patterns like the logo appearing in the top-
left hand side can improve the ease of use for visitors.

120. Knowing how to appropriately display content like navigation
menus is an art form and a science. Seeing how others implement
such devices can help measure success rates; check out the site
called Pattern Tap for common design patterns such as site
navigation.

121. Remember that most people read content in a left-to-right
manner. Therefore, it makes sense to have important details as
high and as far to the left as possible in your design.

End-User Considerations
122. Your design should directly reflect the needs of the end-user.
Don’t pack it with useless features and widgets like clocks or
weather applets. Only give them what they need, as they need it.

123. When updating your website (which you should do often),
check your website statistics to see how people navigate around
your website. It can be helpful to find where issues occur.

Page of 109 650

124. Understanding how people perceive and respond to your
brand can be the difference between trust and abandonment.
Your visitor’s views are more important than your own.

125. I’ve noted it earlier, but it’s worth reinforcing: update your
website often! People gauge the prevalence and accuracy of
websites by the rate at which they are maintained.

126. If you have the time, consider reading about psychology and
sociology topics. They’re not strictly dedicated for the web, but
they apply in so many regions of the industry that it’s worth
learning about.

127. Don’t design a website for yourself. As much as you may like
that scrolling animated reel you just implemented, you will spend
little time visiting the website compared to your audience (who
matter).

128. In a websites design, people look for an experience. If you
give them something positive to remember, you’ll give them
satisfaction, which may result in a long-term relationship.

129. The satisfaction a user gets is directly related to the way you
provide information. If the user struggles to find their way to a
document, you’ll make them angry.

130. Interaction-based design is important. While static content has
uses in certain situations, giving users something to explore and
play with will result in a more memorable experience.

131. Unnecessary interaction should be eliminated from the project.
While subtle or useful enhancements are great for the end-user,
added barriers may cause a user to abandon ship.

132. Applications tend to follow different rules to conventional
content distribution. A need for logical structure and purpose will
be of increased importance within the user interface.

133. If developing apps for a mobile device, it may prove useful to
attempt an offline version for when Internet access is not an
option. Dead zones for cell phone signals still exist.

Page of 110 650

Web Accessibility
134. Accessibility is an important aspect of any web design. If
certain people can’t access the site or the content, that’s a group
of people who you could have converted to a customer.

135. Numbers in relation to accessibility are highly biased. Don’t
think of people with disabilities as a minority; just think of how
many people need glasses for reading — that’s a major one!

136. Impairments come in all shapes and sizes: they can be
physical, intellectual, emotional, social or even technological (e.g.
people without broadband connections or people using mobile
devices as their browser agent).

137. The scale and duration of disabilities differ: someone may be
paralyzed (which would be long-term) or they may have a broken
arm (short term). Don’t just think of lifelong issues.

138. There are plenty of helpful specifications and laws in relation
to accessibility. Have a read through WCAG 1 and 2, Section 508,
PAS 78 and the Six Revisions guide on quick web accessibility tips,
to name a few accessibility guidelines and best practices
resources.

139. Always provide alternative content for images or media and
don’t rely on elements without alt attributes or Flash content
without text variants. You’re hurting some of your visitors.

140. Checking your work in a screen reader is quite easy to do.
There are free tools out there such as WebAnywhere, a browser-
based screen reader simulator, as well as commercial alternatives
like JAWS that you can install and test your website through.

141. Don’t become too reliant on tools like Cynthia as accessibility
validators because these tools only examine machine-readable
code. They’re not perfect solutions for checking your design,
semantic structure, content flow, and visual elements of
accessibility. Read more about the problems with website
validation services.

Page of 111 650

Usability
142. Usability.gov has a selection of great guidelines in PDF format
that can help you improve a website for your end-users. These
PDFs are well worth reading through to see what they can offer in
your design process.

143. Steve Krug and Jakob Nielsen are two highly respected
experts in the field of usability. If you pick up books they have
written, you’ll find lots of fantastic usability guides in them.

144. Usability is about making a website as seamless and functional
for the end-user as possible. Do whatever you can to help users
find and accomplish what they set out to achieve.

145. Before you launch a website to the general public, it’s worth
getting a group of people together to test out your design and
find any bugs which exist in the system and to see how usable
your design is.

146. Carrying out a usability study can be as simple as asking a
group of visitors to carry out a specific task and getting their
feedback in the form of a questionnaire to improve upon.

147. Ensure your design degrades gracefully to create a usable
design that is as universally designed as possible.

148. Progressive enhancement should be what you aim for. Simply
put: you want to make sure everything can be used at a core level,
and increase functionally for devices that can cope. A scenario
would be using CSS3: make sure that your design still works and
looks decent on browsers that don’t yet support CSS3.

149. Encourage people to get involved in helping improve your
design. Ask for useful critiques and feedback that can give you
future website evolution ideas.

150. Keep striving for perfection. It’s probably not possible to have
a perfect web design, but if you always aim for the best, it’ll
encourage you to continue making an effort in maintenance.

Page of 112 650

Sources:

• https://en.wikipedia.org/wiki/Top-level_domain

• https://en.wikipedia.org/wiki/Domain_hack

• https://en.wikipedia.org/wiki/Country_code_top-level_domain

• https://en.wikipedia.org/wiki/WHOIS

• https://sedo.com/us/

• https://www.apachefriends.org/index.html

• https://www.gimp.org/

• https://inkscape.org/en/

• http://dia-installer.de/

• https://filezilla-project.org/

• https://www.audacityteam.org/

• https://www.getpaint.net/

• https://www.scribus.net/

• https://www.eclipse.org/downloads/

• https://www.skype.com/en/

• https://keepass.info/

• http://home.snafu.de/tilman/xenulink.html

• https://notepad-plus-plus.org/

• https://en.wikipedia.org/wiki/Transport_Layer_Security

• https://davidwalsh.name/set-sites-apple-touch-icon

• https://en.wikipedia.org/wiki/
Digital_Millennium_Copyright_Act

• https://mobiforge.com/

• https://en.wikipedia.org/wiki/Web_colors

• https://www.w3.org/TR/WCAG20/

• https://www.section508.gov/

• https://en.wikipedia.org/wiki/PAS_78

Page of 113 650

https://en.wikipedia.org/wiki/Top-level_domain
https://en.wikipedia.org/wiki/Domain_hack
https://en.wikipedia.org/wiki/Country_code_top-level_domain
https://en.wikipedia.org/wiki/WHOIS
https://sedo.com/us/
https://www.apachefriends.org/index.html
https://www.gimp.org/
https://inkscape.org/en/
http://dia-installer.de/
https://filezilla-project.org/
https://www.audacityteam.org/
https://www.getpaint.net/
https://www.scribus.net/
https://www.eclipse.org/downloads/
https://www.skype.com/en/
https://keepass.info/
http://home.snafu.de/tilman/xenulink.html
https://notepad-plus-plus.org/
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://davidwalsh.name/set-sites-apple-touch-icon
https://en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act
https://en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act
https://mobiforge.com/
https://en.wikipedia.org/wiki/Web_colors
https://www.w3.org/TR/WCAG20/
https://www.section508.gov/
https://en.wikipedia.org/wiki/PAS_78

• https://guidelines.usability.gov/

Page of 114 650

https://guidelines.usability.gov/

250 Quick Web Design Tips (Part 2)
As web professionals, we’re always looking for ways to improve our
knowledge and skills. Continuing on with our list of quick web design
tips (see Part 1), these tips will cover the website development
process as well as positive marketing and promotional tips for web
designers.

This is the second part of a 2-part series. In this second part, we will
cover development and marketing tips.

Development
Something every web professional should get themselves swimming
in on a regular basis is code. Code is the backbone of our entire
industry and turns pretty graphics and content into a formal structure
that everyone can enjoy.

While there are far too many languages out there to be able to learn
them all, some languages like HTML, CSS and JavaScript seem to be
centrally focused in whatever we do online.

The tips you’ll find in this section all relate to coding for the web, and
while some of them should be common sense, it doesn’t hurt to
reiterate some valuable things which may improve your code.

Applying markup in the correct proportions will give your website
some inner beauty.

Page of 115 650

151. Web standards are important. If you can provide semantic
code that accurately describes the content, then you may score a
better search position or contextually richer value.

152. Semantics should not stop at using the right element for the
right job. For example, giving your classes and IDs effective names
(like with microformats) can improve the site’s contextual value.

153. Specifications exist for every web language you’ll encounter
(even the more obscure ones). While they can be quite technical,
if you have the patience, it’s well worth reading them.

154. Validate your syntax using the W3C’s validation tools. While
you should use them to help find and fix bugs in code, remember
that you shouldn’t sacrifice evolution for compliance.

155. I recommend learning these technologies in this order: HTML,
CSS and then JavaScript (if you’re a beginner) as this order allows
you to understand the underlying layers that the sequential
languages attach themselves to.

Debugging and Testing
156. When debugging code, it makes sense to eliminate the causes
by removing chunks of code temporarily to see if the issue
resolves itself (you can narrow down the culprit this way).

157. Tools like Firebug can be exceptionally useful for looking
through how your code is being applied (live on the web). It’s
worth having a copy of Firefox with it installed for testing.

158. Services that test your designs for cross-browser support like
BrowserShots are not perfect, but they do have a benefit of giving
you quick glances of how your site might render on different
browsers.

159. If you want to test your website in IE6, there are lots of options
such as a virtual environment or tools like IETester or the Spoon
installers. Don’t just leave the elderly product to chance!

Page of 116 650

160. Internet Explorer 6 may be the bane of our lives, but I highly
recommend testing in any web browser that holds more than 1%
of all traffic to your site, as it’s a significant proportion.

161. I recommend separate folders for style (CSS), feeds (RSS/
Atom), scripts (JavaScript) and images (GIF/JPEG /PNG). It can be
helpful when you organize, test, and debug your site’s content.

162. Relying on pseudo protocols like mailto isn’t a good idea
without a fallback mechanism. If the end-user doesn’t have a
supporting product, they will effectively become a dead link.

Browsers and User Agents
163. Be consistent with the browsers you test your site in. If you go
with the big five ones — Internet Explorer, Firefox, Chrome, Safari,
Opera — then remain loyal to those as a bare minimum.

164. Using browser hacks is generally a bad idea as there’s no
future support guaranteed. If you do need to make IE behave
properly, conditional comments are a friendlier solution.

165. Remember that mobile devices may render your website
differently. Checking on various platforms like the iPhone can be
extremely important to encouraging mobile device traffic.

166. Jscript (within IE) has its own set of conditional comments
called conditional compilation which means you can target
JavaScript with IE-specific code just like with stylesheets.

167. Google Chrome surprisingly doesn’t natively support RSS and
Atom without a plug-in, therefore — like many things (i.e. Flash) —
have it as a supplement rather than a requirement.

168. Device detection on mobile devices is a sticky subject. There
are far too many devices for PHP header checks to be effective
and handheld media types aren’t strictly and uniformly
implemented.

169. WML is a dead language. If you’re producing a mobile-friendly
website, it doesn’t pay to cater to such a limited audience unless
you know you have people using old mobile phones.

Page of 117 650

170. Apart from fixed CSS units (px, cm, mm, etc.) you can use
elastic (em), liquid (%) fluid (min/max-width) or even a hybrid of
various measurements to size your design to flex to the end-user’s
demands.

Behaviour
171. JavaScript frameworks like jQuery and MooTools can be
helpful if you want a quick plug-in method of displaying your
code, but be wary of the amount of bloat or unnecessary
complexity they may have.

 172. Intrusive scripting like preventing right-clicking and forcing
pop-ups is damaging to the end-user. You might think it will aid
your design but it more likely causes users to hit the back button.

173. Don’t use HTML frames or elements like <marquee> and
<blink>. It has become an unwritten rule not to use such user-
experience-damaging markup at the cost is greater than the
reward.

174. Replicating browser functionality is a pointless endeavour. The
user’s browser has print, font resizing, and bookmarking functions
for a reason. Having these things is redundant.

175. Code protection is impossible. If you want to make sure
people can’t take what you’ve created, don’t put it on the web!
Protection scripts only harm genuine users of your site.

Markup
176. Remember to include a DOCTYPE declaration at the top of
your (x)HTML documents. You would be surprised how many
browser inconsistencies occur as a result of omitting the DOCTYPE.

177. One thing that bugs many web developers is the use of the
term, "Alt tag." The alternative content item which is being referred
to is an attribute, not a tag.

178. Don’t include natively block-level elements within inline
elements. <div> elements were not intended to be used

Page of 118 650

generically within paragraphs or lists. You’ll break the semantics if
you do things poorly.

179. Deprecated elements should not be used unless you have a
seriously good reason to make use of them. If there’s a
replacement intended for the same role, use that in its place.

180. HTML5 may be a useful addition to the languages we can use
for the web, but always keep in mind that browser compatibility
may be a major issue for elders with scripting disabled!

Styles
181. CSS3 offers several useful, gracefully degrading properties that
can benefit your visitors. If you take the time to learn how things
are evolving, you’ll be ready for the next generation.

182. Optimizing your CSS can be achieved by making use of
inheritance, using selectors carefully, avoiding repeat declarations
and grouping your style based on what it does for your design.

183. Remember not to forget about printers. Having a print-specific
stylesheet will help eliminate ink and paper wastage and will make
your content look professional when printed.

Various Web Technologies
184. If you need to display large documents, rather than have a
Word document, consider using a PDF or an XPS file, which are
formats oriented for the web.

185. While Canvas, SVG and VML (and their relations) have a lot of
potential for vector graphics on the web, it’s worth recognizing
the serious cross-browser compatibility issues they have.

186. Flash shouldn’t be avoided altogether — it has a higher
penetration of compatibility at this time than HTML5 and it can
offer several things that, without scripting, would be impossible.

187. The key to successful Flash implementation is alternative
content for when it’s unavailable. I certainly wouldn’t rule out the
use of Flash in the future, but dependence is a serious flaw.

Page of 119 650

188. Flash is a great platform for providing dynamic content like
video and audio, but don’t use it in place of mission-critical
components like navigation or the whole website itself!

189. Silverlight and Java are options worthy of recognition if you’re
not a Flash junkie, though it’s worth recognizing that they have less
market share and will therefore be less compatible.

JavaScript
190. JavaScript can be useful for validating web forms and aiding
the end-user’s experience, but remember to use server-side
scripting to verify things in case scripting is unavailable.

191. Unobtrusive scripting is the key to any website. Don’t allow
scripts to infest anchor links using the JavaScript: pseudo and avoid
scripting JS-dependent functionality without a fallback.

Miscellaneous
192. There are some great bookmarklets that can aid your
development cycle using any web browser. Quix, Spry Toolkit,
Firebug Lite and Aardvark are perfect examples of these.

193. The best way to improve a site’s speed is to take advantage of
caching. Separate your site’s structure from the style (CSS) and
from the behaviour (JS), using individual files to achieve this.

194. Table-based designs aren’t a good idea unless you’re forced
to use them for the likes of HTML email. It’s poor semantics and
affects screen-reader accessibility.

195. Picking the right server-side language is important. Options
include PHP, classic ASP, ASP.NET, JSP, Ruby, Perl, ColdFusion and
Python. Research your options before deciding.

196. Your server environment will generally dictate what languages
you can code in. Depending on the setup, you may find that
certain server-side languages (like ColdFusion) have limited
support.

197. If you find yourself wanting to get involved with specific
packages like WordPress, you may find yourself needing to know

Page of 120 650

a specific language. Account for this in choices you make
concerning what server-side language to learn.

198. If you want to remember certain user data only temporarily,
perhaps consider saving the information as a browser-specific
cookie in preference to storing it in a server-side database.

199. Database formats are pretty varied, though most of them
make use of the SQL format. Popular options include mySQL and
MS SQL Server.

200. Have you ever considered taking a web application offline?
There are solutions such as Adobe Air, Titanium and Mozilla Prism
that allow you to create quick, packaged solutions.

Marketing
Finally, we’re going to look at some useful pieces of advice for when
you have the finished website but want to ensure search engines and
visitors see it.

Using a mixture of general marketing advice, search engine
optimization tips (of the ethical variety) and social media usage, you
may find these tips useful in taking your web project to the visitors
you seek.

Getting your website an audience — and keeping the interest in your
website alive — is probably one of the hardest and most time-
intensive aspects of owning a site. Hopefully these tips may inspire
both you and your clients.

Page of 121 650

Advertisements are a core component of getting your brand around
the web.

201. Branding yourself or using your own name to represent you
online can present risks of its own. You may encounter confusion
with people who share the same name as yourself!

Search Engines and Rank
202. Give your website a creative name. It should be short, snappy
and easy to remember (and spell). Visitors need to be able to
recall who you are when they find a need for your goods.

203. Don’t try to trick search engines. Keyword-stuffing into hidden
sections and using deceptive techniques aimed to gain bonus
PageRank may result in you being booted by Google.

204. Keep things organic without targeting search engines
whenever possible. High quality content, for example, will seek
better long-term rewards than a poor quality link-farm.

205. Spending time reducing errors in your code and using
elements (like headings) appropriately will ensure that search
engines not only find your content, but also index it accurately.

206. Remember that marked-up text will hold a higher placement
in search engines than non-indexible content such as Flash or PDF

Page of 122 650

files that tend to have more limited semantic value embedded
within.

207. Your Alexa rank is not important. Alexa ranks are highly biased
and provided by a select few who install the toolbar. It’s honestly
not worth the value many people seem to place on it.

208. Search engines do ignore keyword <meta> tags. I know
plenty of people still claim that this isn’t the case, but its downright
wrong information. They do, however, follow descriptions.

209. The DCMI (Dublin Core Metadata Initiative) is a great way of
giving your site added value and meaning. If you’re into metadata,
I recommend you check the specification out.

210. Adding a Robots.txt file to your website can help you better
assist search engines in knowing what not to index. Robots.txt files
are very easy to produce and are widely recognized.

211. Remember that a robots.txt file will not prevent people from
stealing your content. Search engines unfortunately don’t have to
follow them, so they could just ignore them if they wish.

212. OpenSearch is an XML specification with little recognition and
a powerful function. It lets you add a custom search entry to the
web browser! You could produce a cross-browser search function,
for example.

Best Practices
213. Every website should have an XML Sitemap. It’s generally an
XML list (though HTML or text ones are supported) of every page
on your website, indicating how often content is updated.

214. <title> elements should be unique on every page in your
website. I also recommend having the unique name before any
static content (like the site name) for the sake of bookmarks.

Advertising
215. Advertising in the right areas may find you some great traffic
but it pays to research the keywords you wish to target carefully,
otherwise, you could be pouring money down a drain.

Page of 123 650

216. If you find the likes of Google AdWords isn’t turning the
amount of results you want to gain, consider getting your services
listed directly with useful related sites by buying ad-space.

217. Sponsorship is a great way to get involved with a community
whose audience your site may appeal to. Most Industry-related
events (like web design conferences) allow advertising, for
example.

218. There are many different ways you can monetize a site. Ones
you might consider include advertisements, premium access or
support, donations, subscriptions or even exclusive features!

219. Monetizing a website isn’t an easy task. Beware of get "rich
quick schemes" that claim guaranteed earnings that sound too
good to be true (because they almost always are).

Branding, Reputation, Networking
220. If you’re planning to make money through your venture,
ensure you have all the relevant paperwork filled out (and notify
the tax people). You will need to report all of your earnings.

221. Don’t just think of your project as a digital venture, consider
having some business cards, fliers or printed resumes created for
when you’re out looking for clients in your local area.

222. The domain extension you choose will not impact your search
engine ranking, Google, and Bing do not account for the TLD used
(unless you require a local regional position).

223. Trust is a mission-critical brand element. Only put your name
to project ideas you believe are in the user’s best interests — you
don’t want to end up like the privacy ridiculed AOL.

224. When you drop a link to your own website, do it only in
places where it’s deemed suitable. Spam will reflect poorly on
your reputation and may get you kicked out of communities.

225. Joining chat rooms, forums or likeminded individuals in online
spaces can be a great place to network, learn additional skills and
perhaps even find some extra paying customers.

Page of 124 650

226. Getting your sites featured on other websites can boost your
ranking in search engines (if the link is dofollow) and reputation
online, however, you shouldn’t bother with "free for all" directories
as the quality return will be low.

227. If you want to get your name out to other professionals, taking
some business cards along to a web design conference can be a
great place to meet others on a face-to-face basis!

228. Don’t underestimate the value of marketing yourself through
fliers or adverts in a local paper or magazine (or even the Yellow
Pages). Local businesses want websites too!

229. If you’re looking to apply for some existing jobs to showcase
your skills to clients, check job boards on reputable, well known
niche development sites rather than the likes of monster.

230. Social Media is one of the simplest ways you can build up a
reputation for yourself on the web. Using services that allow you
to build a community of followers can turn into job leads.

Selling
231. If you’re offering physical goods, consider getting them
featured on well-known merchants like Amazon where existing
customers may find what you’re offering as service on the side.

232. Want to showcase your skills to the active community?
Consider expanding your portfolio by writing an e-book or
contributing to an open source project that will get your name out.

233. Digital Rights Management and product activation is
something I recommend avoiding. The bad people will still crack
the item and it’s the legitimate customers who eventually suffer.

234. Selling goods online is quite a simple process thanks to
"middle man" merchants like PayPal, Google Checkout and
Amazon Flexible Payments, so consider your options wisely!

235. Occasionally, giving something away for free can drive a lot of
interest and potential clients to your website. Whether it’s coding
for a charity or handing out a free e-book, it all helps.

Page of 125 650

236. If you’re offering a desktop, device or web-based piece of
software, submitting them to download portals such as CNET
Download.com can get your product featured, win you more
customers and even awards.

Social Media, Social Networking and Blogging
237. Twitter is a great method of getting into blogging if you find
your time is stretched. You have a limited amount of space to be
interesting. This service is basically a crash course on writing.

238. Setting up a blog can be a great way to gain some extra
traffic. If you think you can write about your chosen subject on a
regular basis, you could turn a profit on it and gain clients.

239. If you have the voice or face for it, having a podcast with a
few work colleagues or friends (or even on your own) can give
your sites a unique additional layer of marketing exposure.

240. Join communities who promote best practices in your
particular industry. Being associated with these groups gives you a
hint of professionalism and allows you to help good causes.

241. Facebook is used by a good proportion of the world
population, therefore, it may be worth setting up a base camp for
your project. You can share stuff with fans of the service too!

242. StumbleUpon is not only a great resource of inspiration (and a
place to find awesome learning materials), it’s also a good place to
give your services some non-spammy exposure.

243. Getting your professional profile (or a copy of your resume)
uploaded on sites like LinkedIn and Google profile can give
people a place to find you professionally (so free exposure).

244. Whichever social networks you decide to use, don’t overdo
the self-promotion, use the services for their intended purpose
and spend time building up some high quality content.

245. Social networks provide you with a place to allow customers
to get in touch with you, gain useful feedback on your site and
testimonials. Don’t think of them as just a linking service!

Page of 126 650

Miscellaneous
246. Always take the time to review any marketing plans you have
for your website or services, mistakes can be costly and you want
to ensure your reputation is as positive as possible.

247. Having a large number of visitors or a high PageRank does not
mean your site is successful. It’s the conversion from visitor to
regular user that ultimately decides the fate of your service.

248. Try to be unique with the way you market yourself. Look
outside of the web for inspiration and you may find a unique
method to advertise your services with few active competitors.

249. Having side projects either for fun or to expand your business
can give you client-crossovers where users from one service may
discover what you provide elsewhere (and join up).

250. Enjoy what you do and don’t be too critical. If you find
yourself struggling to meet your expectations, your clients will
notice and you could lose potential visitors or fail as a result.

It’s worth re-iterating that what’s listed here only scratches the surface
of the many facets within our industry.

Perhaps it’s fair to say that beginners may find some of the tips more
useful than a seasoned expert, but I’ve always been of the opinion
that it doesn’t hurt the most established web architects to keep
learning, reinforce their skills and perhaps remember what they
previously may have forgotten.

I hope some of the tips will prove useful in your everyday process,
and perhaps to those who it may benefit: like Chinese whispers, you
can pass the tips to the next generation.

Sources:

• https://developer.mozilla.org/en-US/docs/Web/HTML/
Attributes

• http://dublincore.org/specifications/

• http://www.robotstxt.org/

Page of 127 650

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
http://dublincore.org/specifications/
http://www.robotstxt.org/

• https://www.sitemaps.org/protocol.html

Page of 128 650

https://www.sitemaps.org/protocol.html

The Web’s Undead
For most people, the web looks and feels like things are all peachy —
vibrant, alive, new, fresh. However for those of us in the know, below
this facade exists a consistent cycle of death and rebirth.

While many technologies and practices have left this world and
passed on to the next (R.I.P Netscape), some have been more
resilient. Supposedly dead elements of the web are rising from the
grave, continuing to haunt us.

This article will explore the state of the web zombie invasion!

Nature of the Beast
I’m an avid horror film fan. I love television shows like Buffy the
Vampire Slayer and movies like Night of the Living Dead. The idea of
"beings" which shouldn’t exist (like vampires, ghosts, mummies, and
zombies) highlights the similar thoughts and feelings I receive when
viewing the source code of some pretty awful websites from back in
the early days.

For the novice coder who hasn’t explored the history of our craft,
these undead beings may blend into the landscape rather well. But
unbeknownst to them is the debris of the "abandoned web" — and
the perpetuation of this cycle.

Page of 129 650

IE6 is considered dead to such an extent that an unofficial funeral was
given in its honor!

When I talk about zombies on the web, I’m not referring to the
stereotype of the old-school "web surfer" who naively wanders
around the internet, clicking on every get rich in 24 hours link to get
malware infections — no, not those guys.

On the web, my zombies refer to the browsers, technologies, code
and design practices that are officially dead, but continue to live.

Let’s talk about the walking dead, starting with web browsers.

Zombie Browsers
Of the many different types of web zombies that exist, the noticeable
case of outdated versions of web browsers hold the potential for
being most dangerous.

Ironically, these are the types of creatures that we hold the least
amount of control over. We all know the agony of giving post-
mortem support for Internet Explorer 6 (which passed its use-by-date
eons ago when Microsoft issued its replacement, IE7). And we fondly
remember the Netscape browser that IE killed. However, the scariest
thing is that, even today, there are people who can’t or won’t let go of
their undead browsers by taking five minutes to upgrade.

Page of 130 650

The invasion of zombie browsers is still an ongoing battle.

Because we can’t control the zombie browsers, the issue of those
infected (staggering around using these dead shells) often becomes
a matter of containment (patching our work) or in Zombieland style,
killing their life support.

It's a scary thought how many dead browsers exist out there on our
clients' machines.

In regards to the ethics of zombie support, some of us take the Shaun
of the Dead approach. Because some people still have an attachment
to their “un-deceased" browsers (e.g. IE6), rather than shooting them
up with "Upgrade your browser now!" messages or forcing them into
a wasteland of zero tolerance, we keep them alive through hacks and
special stylesheets — the developer equivalent of how Shaun from
the movie kept his best friend, zombie Ed, alive in his shed.

Rather comical perhaps — but in many ways, some of us go out of
our way to give leniency towards zombie browsers.

Zombie Technologies
Whereas we can easily spot the zombie browser — they stagger
around the web confused at what CSS3, HTML5, and other modern
standards mean — one of the more frustrating types of zombies are
web technologies and standards that have already died, but
developers still cling onto.

Page of 131 650

One perfect example of a zombie technology is Wireless Markup
Language (WML). Due to the evolution of the smartphone market,
modern mobile devices can now render regular HTML.

The peak days of WML may be over, but the BBC still shows this web
zombie some love!

While WML itself is deprecated (W3C’s way of pronouncing
something dead) — and let’s face it, it wasn’t exactly the real web in
the first place — there are still some with old mobile phones wanting
to access the web even through a subpar viewing experience.

To this day, there are still developers who insist on providing or
maintaining WML versions of their website to cater to this zombie
technology, and while their care for users with old cell phones is
admirable, their contribution to the proliferation of a zombie web
standard is not.

Page of 132 650

Testing your website using a variety of older handsets shows how
bad things are getting.

Old technologies being replaced by new ones is nothing new to the
nature of the web. And I suppose that like web browsers, there will
become an epidemic point where the number of undead languages
goes far beyond the number of living ones, which may be
problematic for beginners deciding what they need to learn.

The case of undead technologies isn’t so much of an issue of support
— as we modern web developers tend to comply with current web

Page of 133 650

standards — but that of excess baggage that the web’s future is going
to have to deal with.

Zombie Code
This zombie is something which most of us want to see dealt with in
the harshest possible manner because it’s something that we have
control and choice over.

While undead languages maintain some level of support for the sake
of older browsers or devices, using deprecated HTML tags (e.g.
, <marquee>, <blink>) and non-standard/proprietary CSS (e.g. -
ms-overflow-y) to solve today’s design tasks becomes proof of poor
quality craftsmanship and thought by certain developers.

Revenge of the fallen markup -- deprecated code still exists in
modern web designs.

While we may consider zombie code as just an annoyance, let’s be
clear and state they’re not completely benign.

The most worrying thing about zombie code is the danger of future
browsers stopping the support of these deprecated and non-
standard coding practices. What happens to these sites? They will still
be floating around in cyberspace, waiting to be visited by a potential
client, who’ll later come to us asking for their site’s logo to blink and
scroll.

From past experience, I know of developers even today who still
maintain and produce websites (professionally, I might add) using the
kind of source code we would have expected to see in the early 90s

Page of 134 650

— and it shocks me just as if I saw a real zombie straight out of 28
Days Later.

Separating structure from style is the modern convention, yet zombie
code still works in modern browsers

In much the same way as that of dead browsers or dead
technologies, education will ultimately be the way to combat this
epidemic of outdated code — code that "works" but does so using
undead coding habits.

The number of casualties of the original browser wars has served us
a lesson of what happens when militant code becomes so
disproportionate that web professionals are forced to deal with each
browser individually (with the mobile device war, it could happen
again).

Zombie Design Practices
Finally, we have something that is near and dear to my heart — the
sympathetic case of what could easily qualify as design zombies. We
all remember the days of the early web: Table-based layouts (a
zombie practice still widespread), obtrusive JavaScripts, spacer gifs,
statistics counters, flashing banners, animated clipart, "designed for"
banners, phony website awards and background music (often
blended to form an epileptic massacre of color).

While it could be seen that many of these practices have evolved into
new strains, the issue of outdated design is as apparent today as ever.

Page of 135 650

Sites as bad of this can still be found on the web, and in many cases
they're still maintained!

Design is one subject that — with the web’s evolution — has managed
to maintain a level of historical value with itself. If you’ve ever visited a
newly launched website and thought, "Wow, this website looks retro
in a bad way" — that’s a sign that you’re on a site designed using
undead practices.

While zombie designs seem insignificant — as the code can itself be
very well crafted using best practices and standards — they do
nourish a sentiment of a lack of regard towards usability, accessibility,
user experience and modern aesthetic appeal, making the design
zombie an interesting foe.

Page of 136 650

Another well-intentioned website, with the aesthetic design value of a
zombie.

In Buffy the Vampire Slayer, when asked to spot a vampire, Buffy
looked for people in the club wearing seriously outdated clothes.
While this is funny — it’s also true that having something so old
looking that we could probably carbon date it will ultimately affect
our users’ experience.

Education (surprise, surprise) seems to be the best way forward in
eliminating undead designs.

The Circle of Life
With future standards like HTML5 and CSS3 emerging, brand new
zombies from the array of existing standards will continue to rise.

Maintaining a skill set and knowledge base that is up to date — and
staying ahead of the curve — is the best way to avoid the
reoccurrence of zombie practices and habits.

And while some of the web’s afterlife will continue to exist without
causing too much harm, there comes a time where such undead
beings can ultimately lead us into a spiral of escalating annoyance
and rot.

Details about standards aren't that hard to come by when you know
where to look.

Page of 137 650

It’s worth pointing out that the web has an interestingly rich history full
of technologies which, though ousted by something newer, may still
hold a place in our world.

While in a perfect world, the transcendence from one to the next
should be the ideal solution, newborn standards (like XHTML 2.0) can
die before their time. As such, don’t think of zombies simply as the old
stuff — they can be new stuff that didn’t quite fully form yet but may
have been early-adopted by some. Perceptions can lead to
accidental shootings and you don’t want to give the death sentence
to a practice that has legitimate value.

XHTML 2.0 unfortunately didn't make it to fruition and thus became a
newborn zombie.

Old standards die and new standards appear in their place — that’s
just the way of the web. The circle of life is well intentioned, it moves
us forward to bigger and brighter things. The solution isn’t to stop
innovation — that’s just crazy — but culling the ever-increasing zombie
population that still exists.

As an industry, it’s our duty to use what skill, knowledge and network
we have to push back the zombie invasion. And while I’m not saying
you should go after IE6 users with holy water and a crucifix, you could
take a more civil approach through education and conversations.

If you know someone with web zombies, why not spend a few
minutes explaining the problem and helping them make an informed

Page of 138 650

choice? Every outdated element on the web we can eliminate is
worth fighting against. Especially if we don’t want the web to be a
haunted graveyard.

Sources:

• https://techcrunch.com/2010/03/05/ie6-funeral/

• https://en.wikipedia.org/wiki/Wireless_Markup_Language

• http://www.zeldman.com/2009/07/02/xhtml-wtf/

Page of 139 650

https://techcrunch.com/2010/03/05/ie6-funeral/
https://en.wikipedia.org/wiki/Wireless_Markup_Language
http://www.zeldman.com/2009/07/02/xhtml-wtf/

5 Web Files That Will Improve Your
Website
The amount of code that developers encounter regularly is
staggering. At any one time, a single site can make use of over five
different web languages (i.e. MySQL, PHP, JavaScript, CSS, HTML).

There are a number of lesser-known and underused ways to enhance
your site with a few simple but powerful files. This article aims to
highlight five of these unsung heroes that can assist your site. They’re
pretty easy to use and understand, and thus, can be great additions to
the websites you deploy or currently run.

An Overview
Which files are we going to be examining (and producing)? Deciding
which files to cover was certainly not an easy task for me, and there
are many other files (such as .htaccess which we won’t cover) you can
implement that can provide your website a boost.

The files I’ll talk about here were chosen for their usefulness as well as
their ease of implementation. Maximum bang for our buck.

We’re going to cover robots.txt, favicon.ico, sitemap.xml, dublin.rdf
and opensearch.xml. Their purposes range from helping search
engines index your site accurately, to acting as usability and
interoperability aids.

Let’s start with the most familiar one: robots.txt.

Robots.txt
The primary function of a robots.txt file is to declare which parts of
your site should be off-limits for crawling.

By definition, the use of this file acts as an opt-out process. If there are
no robots.txt for a directory on your website, by default, it’s fair game
for web robots such as search engine crawlers to access and index.

While you can state exclusion commands within an HTML document
through the use of a meta tag (<meta name="robots"

Page of 140 650

content="noindex" />), the benefits of controlling omitted pages
through a single text file is the added ease of maintenance.

Note: It’s worth mentioning that obeying the robots.txt file isn’t
mandatory, so it’s not a good privacy mechanism.

This is how the robots.txt file interacts between a search engine and
your website.

Creating a Robots.txt File
To create a robots.txt file the first and most obvious thing you will
need is a text editor. It’s also worth pointing out that the file should be
called robots.txt (or it won’t work) and it needs to exist within the root
directory of your website because by default, that’s where web
robots look for the file.

The next thing we need to do is figure out a list of instructions for the
search engine spiders to follow. In many ways, the robot.txt’s structure
is similar to CSS in that it is comprised of attribute and value pairs that
dictate rules.

Another thing to note is that you can include comments inside your
robots.txt file using the # (hash) character before it. This is handy for
documenting your work.

Here’s a basic example telling web robots not to crawl the /
members/ and /private/ directory:

User-agent: *
Disallow: /members/
Disallow: /private/

Page of 141 650

The robots.txt exclusion standard only has two directives (there are
also a few non-standard directives like Crawl-delay, which we’ll cover
shortly).

The first standard directive is User-agent. Each robots.txt file should
begin by declaring a User-agent value that explains which web
robots (i.e. search crawlers) the file applies to.

Using * for the value of User-agent indicates that all web robots
should follow the directives within the file; * represents a wildcard
match.

The Disallow directive points to the folders on your server that
shouldn’t be accessed. The directive can point to a directory (i.e. /
myprivatefolder/) or a particular file (i.e. /myfolder/folder1/
myprivatefile.html).

There is a specification for robots.txt, but the rules and syntax are
exceptionally simple.

Robots.txt Non-Standard Directives
Of course, whilst having a list of search engines and files you want
hidden is useful, there are a few non-standard extensions to the
robots.txt specification that will further boost its value to you and your

Page of 142 650

website. Although these are non-standard directives, all major search
crawlers acknowledge and support them.

Some of these more popular non-standard directives are:

• Sitemap: where your Sitemap.xml file is

• Allow: opposite of Disallow

• Crawl-delay: sets the number of seconds between server
requests that can be made by spiders

There are other less supported directives such as Visit-time, which
restricts web robots to indexing your site only between certain hours
of the day.

Here’s an example of a more complex robots.txt file using non-
standard directives:

Allow: /private/public.html
Comment: I love you Google, come on in!
Crawl-delay: 10
Request-rate: 1/10m # one page every 10 minutes
Robot-version: 2.0
Sitemap: /sitemap.xml
Visit-time: 0500-1300 # military time format

Whilst not a standard, there is an extension for robots.txt which has
mainstream support.

Page of 143 650

Favicon.ico
A favicon (short for "favorites icon") is a small image (like a desktop
application’s shortcut) that represents a site.

Shown in the browser’s address bar, the favicon gives you a unique
opportunity to stylize your site in a way that will add identity to
browser favorites/bookmarks (both locally and through social
networks).

The great thing about this file is that every major browser has built-in
support for it, so it’s a solid extra file to provide.

This is how the favicon.ico file affects your site visually through the
browser.

Creating a Favicon.ico file
To create a favicon, you’ll need an image or icon editor. I am a fan of
Axialis IconWorkshop, but there are free editors like IcoFX that do the
job well.

You can also find quite a few free online favicon tools by viewing this
list of web-based favicon generators.

You need to have a 16x16px icon (or 32x32px, scaled down) that
matches what you want to see in the browser.

Once you are done creating your icon’s design, save the file as
"favicon.ico" in the root directory of your web server (that’s where
browsers look for it by default).

Page of 144 650

Note: It’s a good idea to use the .ico file type, as some browsers don’t
support PNG, GIF or JPEG file types.

To make this file work properly, refer to the location of your favicon in
the <head> tags of all your HTML documents, as such:

<head>
<link rel="shortcut icon" type="image/vnd.microsoft.icon"
href="favicon.ico" />

<head>

The rel attribute values of "shortcut icon" or "icon" are considered
acceptable and the MIME type of "vnd.microsoft.icon" (as of 2003)
replaced the older type ("image/x-icon") as the official standardized
favicon MIME type for .ico files on the web.

Note: While Internet Explorer (and some other browsers) will actively
seek out your favicon in the root directory of your site by default
(which is why you should have it there), it’s worth adding the above
code into the <head> of your HTML just to make it explicitly known by
other types of browser agents.

There are multiple online tools which can create a favicon from
existing images.

Page of 145 650

Favicon's in Apple Devices
Another standard (of sorts) has appeared in light of Apple’s iPod, iPad,
and iPhone. In this situation, you can offer a 57×57 PNG, ICO or GIF file
(alpha transparency supported) that can be displayed on the devices’
Home screen using the web clip feature.

Apple also recommends that you use 90-degree corners (not
rounded corners, which the devices will do for you automatically) to
maintain the "feel" of such icons.

To make this file work properly, place the following code into every
page within your <head> tags:

<head>
<link rel="apple-touch-icon" href="images/icon.png" />

</head>

For users of Apple devices, a specially produced "favicon" can be
produced.

Sitemap.xml
One thing website owners worry about is getting their website
indexed correctly by the major search engines like Google.

While the robots.txt file explains what files you want excluded from
results, the Sitemap.xml file lists the structure of your site and its
pages. It gives search engine crawlers an idea of where things are on
your site.

Page of 146 650

This is how the Sitemap.xml file interacts between a search engine
and your website.

As always, the first recommended course of action to produce a
Sitemap is to create the XML file that will contain its code. It’s
recommended that you name the file as "sitemap.xml" and provide it
within the root directory of your website (as some search engines
automatically seek it there).

It’s also worth noting that while you can submit your Sitemap file
location directly to search engines, adding the non-standard Sitemap
directive to your robots.txt file can be useful as it’s widely supported
and gives spiders a push in the right direction.

Below is a basic example of how a Sitemap looks like.

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/
0.9">
<url><loc>index.html</loc></url>
<url><loc>contact.html</loc></url>

</urlset>

Each Sitemap file begins with a Document Type Definition (DTD) that
states that the file is UTF-8 encoded, written in XML, and uses the
official Sitemap schema.

Following those formalities, you simply produce a list of your URLs
that exist within your website’s structure.

Page of 147 650

Each URL must be contained within two elements: <url> and <loc>.
This is a very simple specification to follow, so even less experienced
developers should be able to replicate this basic mechanism with
little effort.

To reference your Sitemap inside your HTML documents, place this
code between the <head> tags:

<head>
<link rel="sitemap" type="application/xml" title="Sitemap"
href="sitemap.xml" />

<head>

Just like most XML-based schemas, there is a protocol and
specification to follow.

Other Sitemap Tags
While you could limit yourself to simply listing every file, there are a
number of other meta-information that can be included within the
<url> tag to help further define how spiders deal with or treat each
page in the site — and this is where the Sitemap’s true power lies.

You can use <lastmod>, for example, to state when the resource was
last modified (formatted using YYYY-MM-DD). You can add the
<changefreq> element, which uses values of always, hourly, daily,
weekly, monthly, yearly, and never to suggest how often a web page

Page of 148 650

changes (for example, the front page of Six Revisions has a value of
daily).

There is also the <priority> tag, which uses a scale of 0.0 to 1.0 that you
can utilize to indicate how important a web page is to a website.

Here’s an example of using the above tags:

<lastmod>2010-05-13</lastmod>
<changefreq>monthly</changefreq>
<priority>0.8</priority>

Google allows you to submit your Sitemap to initiate its analysis of
your site structure.

Dublin.rdf
Ensuring you provide metadata has become big business among SEO
professionals and semantics advocates. The appropriate use of HTML,
metadata, microformats and well-written content improves the
chances of appearing in the right search results. They also allow an
increasing number of browsers and social networks to aggregate and
filter the data so that they can accurately understand what your
content represents.

The Dublin.rdf file acts as a container for officially recognized meta
elements (provided by the DCMI specification) which can augment
the semantic value of the media you provide.

If you’ve ever visited a library and tried to locate a book, you know
that you will often have to flick through the library catalogs to find

Page of 149 650

books based on their subject, their author, or perhaps even their title.
The aim of the DCMI is to produce such a reference card for your
website that will help search engines, social networks, web browsers,
and other web technologies understand what your site is.

This is how the Dublin.rdf file interacts with supporting social
networking mediums.

Creating a Dublin.rdf File
To begin, you need to produce the file itself (which we shall name
"Dublin.rdf"). In order to maintain consistent meta details about the site
(as opposed to individual DCMI meta tags for specific pages and
resources), we shall create an RDF file (formatted as XML) with a
reference within the HTML document to indicate that the information
is available. While you can embed DCMI meta tags within HTML, RDF
allows you to cache the data.

Page of 150 650

This is how the OpenSearch file interacts with your site through the
browser.

When a supporting spider or other resource that acknowledges the
DCMI core sees the file, they can cache and directly relate to the
information. This doesn’t mean you shouldn’t use traditional meta tags,
but the file can serve as a useful supplement.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.yoursite.com/">
<dc:contributor>Your Name</dc:contributor>
<dc:date>2008-07-26</dc:date>
<dc:description>This is my website.</dc:description>
<dc:language>EN</dc:language>
<dc:publisher>Company</dc:publisher>
<dc:source>http://www.yoursite.com/</dc:source>
</rdf:Description>

</rdf:RDF>

Like most XML files, this RDF document has a DTD — and within that,
you have the description element (which links to the resource being
referenced).

Page of 151 650

Within the description, as you can see from the above, there are
several elements (beginning with the prefix of dc:) — these hold the
metadata of the page.

There’s a whole range of terms you can add (see this list of DCMI
metadata terms), it’s simply a case of adding the term’s name, then
giving a value as denoted by the DCMI specification. You’ll end up
with a library of useful data that can improve your site’s semantics and
interoperability with other sites and applications!

To make this file work properly, place the following code into every
HTML document within the <head> tags:

<head>
<link rel="meta" type="application/rdf+xml" title="Dublin"
href="dublin.rdf" />

<head>

The Dublin.rdf file makes use of the DCMI specification to provide
meta information.

OpenSearch.xml
The ability to search a website is one of the most important ways
people locate content.

The OpenSearch file allows you to add a custom search engine listing
(on your own site) through the search feature that appears in all
modern browsers. All of the major browsers can take advantage of
OpenSearch; it’s pretty durable.

Page of 152 650

While you will still want to provide a search mechanism on your
website, this core enhancement complements the user’s in-browser
search capabilities.

This is how the OpenSearch file interacts with your site through the
browser.

Like with all things we’ve discussed thus far, we need to produce the
file for the code to be placed in.

As this particular type of file doesn’t have assumed name reservations
like robots.txt or sitemap.xml, we could call the file whatever we like.
However, the convention for OpenSearch files is to name the file,
"opensearch.xml".

You’ll want to include the code below as your starting template, then
proceed to customizing the required tags such as <ShortName>, <Url>
and <Description> (they are case-sensitive) to describe your site.

Page of 153 650

The example used below is for Six Revisions using Google Search.

<?xml version="1.0" encoding="UTF-8" ?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/
opensearch/1.1/">
<ShortName>Six Revisions</ShortName>
<Description>Search this website.</Description>
<Image>favicon.ico</Image>
<Url type="text/html" template="http://www.google.com/
search?
sitesearch=http%3A%2F%2Fwww.sixrevisions.com%2F&as
_q={searchTerms}"/>

</OpenSearchDescription>

The tags included above are:

• ShortName: the title you want for your search extension

• Description: explains the purpose of the search box

• Image: this isn’t required like the others, but I recommend
referencing your Favicon with it so the search feature has a
unique icon

• Url: requires a MIME type and a template attribute which links to
the search terms

To make this file work properly, place the following code into every
page within the <head> tag:

<link rel="search" type="application/opensearchdescription+xml"
title="Website" href="opensearch.xml" />

Page of 154 650

This is how the OpenSearch file interacts with your site through the
browser.

Other OpenSearch Tags
There’s a range of additional tags we can provide. Among these are:

• AdultContent: if the site has adult material needing to be
filtered, set to false

• Attribution: your copyright terms

• Contact: an email address for the point-of-contact of your site

• Developer: who made the site?

• InputEncoding and OutputEncoding: The MIME type used

• Language: i.e. EN for English

• Query: for more detailed search terms

• Tags: keywords, separated by a space

• SyndicationRight: The degree to which people can request,
display or send results

Page of 155 650

Example usage of these other tags:

<AdultContent>false</AdultContent>
<Attribution>Copyright, Your Name 2010, Some Rights Reserved.</
Attribution>
<Contact>None@none.com</Contact>
<Developer>Your Name</Developer>
<InputEncoding>UTF-8</InputEncoding>
<Language>en-us</Language>
<OutputEncoding>UTF-8</OutputEncoding>
<Query role="example" searchTerms="terms" />
<Tags>Example Tags Element Website</Tags>
<SyndicationRight>open</SyndicationRight>

This is how the OpenSearch file interacts with your site through the
browser.

Simple, Small and Effective
While this guide represents a crash course in producing these useful
files, it’s worth pointing out that taking the time to understand the
syntax of any language is important in order to determine what the
impact of these files on your website.

These files represent a truth that there’s more to a website than HTML,
CSS, and JavaScript, and while producing these files will certainly not
act as a replacement for your existing code workflow, their inherent
benefits make them worthy of consideration to supplement your
projects. Give them a try for yourself!

Page of 156 650

Sources:

• https://en.wikipedia.org/wiki/Web_crawler

• http://www.robotstxt.org/

• http://www.conman.org/people/spc/robots2.html

• https://www.axialis.com/iconworkshop/

• https://www.kodlian.com/apps/icon-slate

• https://www.favicon.cc/

• https://www.sitemaps.org/protocol.html

• https://www.google.com/webmasters/tools/home

• http://dublincore.org/

• http://dublincore.org/documents/dcmi-terms/

• http://www.opensearch.org/Home

Page of 157 650

https://en.wikipedia.org/wiki/Web_crawler
http://www.robotstxt.org/
http://www.conman.org/people/spc/robots2.html
https://www.axialis.com/iconworkshop/
https://www.kodlian.com/apps/icon-slate
https://www.favicon.cc/
https://www.sitemaps.org/protocol.html
https://www.google.com/webmasters/tools/home
http://dublincore.org/
http://dublincore.org/documents/dcmi-terms/
http://www.opensearch.org/Home

A Guide on Layout Types in Web
Design
One of the most variable aspects of web design is the way in which
we approach width and height in terms of measurements and
flexibility.

For many years, we have rotated between the benefits and pitfalls of
using fixed, elastic, and liquid measurements in a quest to give
optimal viewing experiences in highly varied situations, while
balancing our need to control things in our web pages.

But, as Bob Dylan proclaimed a long time ago, "The times, they are a-
changin’," and with these changes come a variety of new ways for
laying out your website’s pages and an even more variable landscape
of methods for viewing websites.

In this article, we will examine web layout types — old, new, and the
future. We will explore the subject in the context that websites are
being viewed in a diverse amount of ways, such as through mobile
phones, netbooks, and touchscreen personal devices like the iPad.

About Your Options
Let’s set our objectives for this exploration of layout types:

• We shall examine the variety of options that exist

• For each layout type, I’ll try to suggest some situations they are
best used in

• The pros and cons of a layout type compared to others

We will discuss 10 types of web layouts.

Page of 158 650

While pixel perfection is a pipe dream, there’s more to layouts than
fixed, liquid or elastic!

The main lesson to take away from these choices is to think carefully
about why an option is suitable for a particular situation and how your
choice will affect your audience.

Let’s dig in, starting with absolute layouts.

Page of 159 650

Absolute Layouts
One of the least commonly used methods of measurement
employed in web design is absolute measurement (i.e. inches, cm,
mm and picas). Absolute units and positioning is traditionally found in
print media, which natively use these units of measurement.

The conversion of print to web format can be seen in word
processing software such as Microsoft Word, which still uses these
conventions when formatting text and sizing the dimensions of a
document in order to make it appear as close as possible to printing
on paper.

Absolute layouts have limited use in web designs.

A use for absolute layouts on the web is for PDF documents where
content remains static.

Of course, just because it isn’t popular doesn’t mean it doesn’t have its
place on the web designer’s bevy of options. If you are someone
who utilizes printer-friendly stylesheets — yes, people do still print
web pages — the absolute measurements of cm, mm, inches, and pt
can help you prepare a page layout for printers more accurately.

Page of 160 650

Relative Layout
Relative positioning and layouts adjust in size depending on the size
of the user’s browser viewport.

The area inside the red border is the browser’s viewport. You can
change the size of the viewport by resizing the window. Different
monitor sizes have various maximum sizes for the view port.

Typically, this type of layout relies on everything working at 100%
width, whether it’s a small screen (like a netbook) or a 24-inch
widescreen desktop monitor. This means that the layout will scale
according to the viewer’s situation.

Page of 161 650

Very few sites make use of 100% widths, but it does work.

Fixed Layout
Commonly regarded as one of the least flexible methods of laying
out a web design, the use of pixel-based measurements has almost a
digital resonance associated with it that transfers across from the print
industry, in that the medium relies on fixed/static measurements.

This unit of measurement is accurate and leaves little guessing as to
how a web design will appear across different web browsers and has
become exceptionally popular among sites that favor control and
predictability over optimizing the layout for the audiences’ particular
viewing situation.

Page of 162 650

A fixed width layout is used on Six Revisions.

We all know that problems can arise from having to scroll in all sorts
of directions, and the fixed measurement of a px-based layout has
this general issue in spades.

While many people seek out some sort of ideal width to ensure
maximum compatibility, it’s worth mentioning that if you use a lot of
elements that require fixed layout rules like non-repeating
background images or borders with other non-relative elements,
fixed measurement layouts can do the job well and act as the best all-
around solution.

Elastic Layout
One of the most used methods of laying out a design’s content is
using the relative em unit of measurement.

Commonly referred to as an elastic layout design (due to the way it
flexes by growing and shrinking to meet the content’s needs), it has
shown a great deal of appreciation within the web design community
due to its ability to scale content, text sizes, and such.

Unlike with fixed units of measurements where absolute-unit elements
like images are best suited (due to maintaining without distorting),
elastic layouts work best when flexible content (such as text blocks)

Page of 163 650

takes the front seat (though there are ways to have images scale
elastically as well).

Popular for its elastic nature, em measurements are recommended for
font sizes.

Of all the methods listed, the elastic layout type is the most
subservient to your content as it gives the content itself the deciding
position as to how the layout should scale.

Making the text smaller in such a design will reduce the width or
height, and enlarging the text will have the opposite effect.

This unique attribute allows the layout to resize based on the content
rather than the needs of the layout.

Using an elastic solution is perfect if you want the layout to be
determined by the content, but it can have issues if the text scales
beyond the viewport (causing unwanted horizontal scrolling).

Scaled Layout
One of the latest methods in CSS3 allows the manipulation of the
available viewport around certain device orientations (i.e. portrait and
landscape).

Page of 164 650

Depending on the way in which the device is held, the design has the
potential to alter its visual layout (altering the amount of space given
to the content itself).

Unlike the others, this type of layout does not rely on measurement
units, but rather a specific layout type. However, this notion shouldn’t
be underestimated as a way of dealing with complex columns on
small screens.

10 years ago, we wouldn’t have considered a screen’s orientation.
How times have changed!

Scaled layouts truly shine in the smartphone market where the display
can be rotated or moved frequently (such as the iPhone, for example).

Page of 165 650

The iPhone adjusts orientation of your websites on-the-fly.

With such limited space being available on handheld mobile devices,
you cannot only maximize the way your pixels are allocated, but you
can also allow people the option to choose whichever method they
prefer to visualize the information.

Each person will use his or her web-enabled mobile device in a
different way, and by allowing your design to relate your content in a
transformative way depending on the orientation, you can maximize
the usability of your content.

Liquid (or Fluid) Layout
The most relaxed method of providing a dynamically expanding or
contracting design makes use of the ever-popular percentage (%) unit
measurement.

This layout type has gained mass popularity because it is the ultimate
way of allowing the total opposite of a fixed layout where the content
will simply take whatever space is available to it.

Page of 166 650

Percentages require careful calculation as you can’t give more than
100% without issues!

The limited guarantees you hold on the viewport being used goes
beyond screen resolutions (imagine your site on a 6-inch screen
versus a 100-inch screen, even just at 80% width).

Though it goes without saying that a liquid layout is useful in almost
every web-based situation because it adjusts its width depending on
how big or small the user’s viewport is — so it’s definitely worth
looking into.

Equated Layout
The next method of laying out content we shall look at is the equated
layout, which makes use of a new CSS function called calc (see W3C
calc spec).

Page of 167 650

When this measurement capability reaches browsers, a new level of
control will exist.

While the previous layouts we’ve covered rely on specific widths or
heights being provided, an equated layout allows you to mix a fixed
and relative value by using a calculation like width: calc(50% - 200px).

Have you ever had a situation where you wished that you could make
up the full 100% but also account for things like divs with borders and
elements that have fixed widths (such as an image)? If you’re anything
like me, it’s certainly something that has crossed your mind.

The calc CSS3 function, which has not been widely adopted yet (but
is part of the CSS3 spec) may just be the thing you are looking for.
While the function still isn’t widely supported by existing web
browsers, this can be a future-forward option for building layouts with
an added layer of pliancy.

Fluid-Min/Max Layout
A common problem that we have as designers is that whenever the
amount of space we have becomes either too wide or too narrow (or
too tall or too short), the relatively-measured and flexible content we
have gets too diluted or too compressed (which is bad news).

Page of 168 650

Using minimum and maximum widths (or heights), you can set limits
on how much the design can scale so that you can still have flexibility
— but only to a certain extent. Rather than spanning the viewport like
a liquid layout, this layout type flows only up to where it’s told (‘atta
boy).

A fluid/"jello" layout will scale only to a certain fixed width or height.

If there’s one thing that causes problems with layouts, it’s us making
assumptions as to the amount of space that we will have available for
our design elements.

The benefits of the CSS min-width, max-width, min-height and max-
height properties are most widely noticed when you want your
layout to be confined within certain dimensions (like within a fixed-
width design) but don’t want to suffer the wrath of horizontal
scrolling.

For example, if you wanted to have your width scale to 100% for small
screens but only up to, say, 1,500px so that your layout doesn’t get too
wide for larger screens, then you can use a max-width:1500px.

As this method of laying out a web page provides a safety net that
browsers can rely on (based on the min and max values you supply),
you can give your fixed work a bit of added flexibility.

Page of 169 650

Conditional Layout
With the rise in devices like the iPhone, a need has appeared for a
way of altering web designs beyond conventional layouts to ensure
that mobile device users can have an optimized experience.

The ability to serve a unique stylesheet based on the device or
viewport width and height (through CSS3’s media queries) gives rise
to an even more flexible and friendly way to represent your site’s
content. This layout type is something I’d like to call "conditional
layout.”

The above design uses CSS3 media queries to scale the design down
as required.

Of all the methods of laying out information that have appeared
recently, this is by far the one with the most promise (once the
browser compatibility issues are ironed out).

Most website designs rely on a single stylesheet. Using CSS3 media
queries (especially with mobile and desktop experiences) can bring
conditional layouts to best meet the user agent.

Page of 170 650

The downside of this is that it means you will need to develop and
maintain stylesheets for particular devices — much like how you, in
the past, maintained IE-specific stylesheets.

Hybrid Layout
Of course, while mentioning all of these layout types, we can’t forget
to mention the most popular layout method of all — the hybrid layout
pretty much stands by its name in that the design ends up using a
mixture of various layout types. This includes mixing and matching
various units and concepts to ensure that the design adapts to the
browser’s viewport only when it needs to and still be able to retains a
certain level of control over parts of a website that need more fixed
structures.

While it requires you to be more thoughtful over your work, it’s
possibly the smartest way to design and develop.

Most sites don’t stick to one measurement type, they hybridize based
on needs.

Most websites make use of a hybrid layout because certain
measurement units are useful for certain situations. While many
people still cling to the idea that there is one perfect layout method

Page of 171 650

waiting to be found, I think that the hybrid will overcome situational
issues by blending together the best of all worlds.

Perhaps you might end up with an absolute layout in your print
stylesheet, and maybe you might have fixed widths using a liquid
body with elastic content and a fluid control for the outside edges
with scaled and flexible support for certain devices — the
combinations are bountiful!

The Bigger Picture
Clearly, there are many options to consider when laying out your web
pages, and thus it makes sense — both pragmatically and theoretically
— to pay close attention to the details and scope of any design
project you undertake.

Which layout type you utilize to produce your website is something
that deserves as much attention as the fonts you use or the color
theme you put together.

It’s also worth highlighting that there’s no perfect way to deal with
every situation and therefore there’s no one type that is universally the
best for all situations.

There’s no right or wrong way to design, but careful thought can
improve some situations.

Page of 172 650

Design is one of the most fundamental skills that any web professional
must get to grips with. The way the Internet is being consumed is
rapidly evolving, with wide disparities in both the devices we employ
and the tools we take advantage of.

There’s more to contend with than good usability, accessibility, web
copy, color contrast, and so forth. A good website must meet an ever
increasing number of needs and thus the search for the perfect layout
has become a Holy Grail quest of sorts for web designers.

While times are changing (as do situations), picking the right layout
right now should be done methodically.

Sources:

• http://www.braillenet.org/colloques/Bnet2000/access.pdf

• http://www.csszengarden.com/063/

• http://www.csszengarden.com/001/

• https://www.w3.org/TR/css-values-3/#calc-notation

• http://www.positioniseverything.net/articles/jello-expo.html

• https://www.w3.org/TR/css3-mediaqueries/

• https://jonikorpi.com/

• https://www.apple.com/iphone/

• http://green-beast.com/blog/?p=199 

Page of 173 650

http://www.braillenet.org/colloques/Bnet2000/access.pdf
http://www.csszengarden.com/063/
http://www.csszengarden.com/001/
https://www.w3.org/TR/css-values-3/#calc-notation
http://www.positioniseverything.net/articles/jello-expo.html
https://www.w3.org/TR/css3-mediaqueries/
https://jonikorpi.com/
https://www.apple.com/iphone/
http://green-beast.com/blog/?p=199

Reductionism in Web Design
In the field of design, the phrase "complexity is the enemy" speaks to
how keeping things simple makes our work more functional.

With the modern crop of technologies that dole out increasing
amounts of functionality, it’s important that we take the time to ensure
a balanced level between oversimplification to the level that insults
our visitor’s sense of competency and extreme complexity which
endangers their experience.

In this article, I want to talk about the idea of reductionism — a
process that improves the efficacy of our designs as well as the time
we spend making and maintaining them.

Going "back to basics" and challenging the way we design, write
code and produce content will de-clutter our interfaces, improve the
readability of our web copy, speed up deployment, make things
easier to use, and reduce our maintenance requirements.

Reductionism in Web Design
It’s important to define what reductionism is in the context of web
design. While ideas towards reductionism vary depending on who
you ask, a simple definition is that reductionist methods boil down
complex things to simpler things, which might include modularizing
the system into more digestible components; all of this while avoiding
losses in value (fidelity) and usefulness.

Essentially, it means that if you have something that’s bloated, heavy
or complex — removing some bulk will improve your work.

Page of 174 650

Reductionism doesn’t mean minimalism – but they can work hand in
hand.

Understanding the complexity of things by reducing them into smaller
components allow us as "web scientists" to better maintain and
organize what we produce.

While reductionism allows us to objectively strip away the complexity
and see the fundamental principles that guide our work, it specifically
highlights the importance of knowing what is beneficial to the end
user and to us as the makers of these products.

As a practice, we can save ourselves time and money (by not
undertaking unnecessary work) and free our visitors from distractions.

Benefits for the User Experience
Sometimes, we as web professionals spend a great deal of time
trying to plan and "pre-react" to situations that will unlikely happen.

We want to give all users every single function that they want/may
want. This mentality — though well-intentioned — usually backfires
and we end up with something over-engineered and scaled to epic
proportions.

But if we just provide our users the things they really need (and
nothing more), it reduces the amount of thinking and cognitive
processing we subject them to.

Page of 175 650

If we think about the concept of reductionism in this way, having
more features, spending more development time in things practically
no one will use, and pre-planning every single potential situation
actually makes it worse for our users.

Reducing the amount of content a visitor needs to give to sign up for
a web service is an example of reductionism.

The key point to take away is that reductionism is more than just some
quick technique to boost your work’s quality. It’s a way of life and a
beautiful ideology for maintaining a tight workflow.

Principles of the Methodology
In web design, there are three main places we can apply
reductionism:

• Website content

• Code

• Design

Additionally, you could apply reductionism in the way your web
design business works and how you approach developing solutions
to a client’s problems.

Page of 176 650

The three reductionist methods relative to building and creating
websites.

Whether you’re trying to apply a reductionist methodology to your
content, code or design, the principle remains the same: You want to
ensure that everything in your product is absolutely critical to the
people who’ll be using it.

End users hate being confused or feeling like they’ve lost control;
giving them the power of having more time to read your content,
achieving a task with your user interface quicker and so forth
improves their experience.

The defining characteristic of our work then becomes quality rather
than quantity. It’s not going to be about having 100 features, it’s about
having two really great ones.

Page of 177 650

Content Reductionism
Content reductionism can be approached in many ways. The simplest
way is taking your copy, reading through it, and paying attention to
ways you can simplify the structure, reduce the word count, remove
redundancy, strike out jargon, and just anything that doesn’t really add
any value to it.

Of course, there’s more to content than text. Image or visual sensory
reductionism can be performed by taking out gratuitous graphics that
simply serve as eye-candy and page bloat, but doesn’t really help
drive your points across to the reader. Remember that a picture
should be worth a thousand words. Using an image should reduce
the amount of stuff you have to write, otherwise, it doesn’t belong in
your copy.

Breaking content into what’s necessary and what can be omitted
increases readability.

Page of 178 650

Code Reductionism
Code reductionism is all about simplifying your code and making sure
it can’t be written any better.

However, this process isn’t that simple, and we also have to make
micro-decisions in certain cases and go in favor of semantic and web-
accessible, yet lengthier code.

Code reductionism can also take place in the amount of web
technologies we use. If you can produce a satisfactory effect using
CSS (such as this CSS-only hover effect), there’s no point in over-
engineering the effect by making it dependent on JavaScript or Flash.

Semantic and minimal code will increase the speed at which your
website loads.

Design Reductionism
Design reductionism can be established through the ideals of
simplicity, usability and stating the obvious.

Steve Krug’s book, Don’t Make Me Think!, has a title that summarizes
the concept well. We ought to pay attention to the intuitiveness in our
designs and by reducing design elements, our designs require less
thinking and processing on our user’s behalf.

If you have doubts about a particular design element — it probably
means you can take it out.

Page of 179 650

Increasing the simplicity through functional design will boost end-user
satisfaction.

Reductionism Tips

The key point to maintain is that when you apply reductionism to your
work, the final product should be better or equal to your current state.
It’s worth noting that reductionism doesn’t preach arbitrarily taking
things out just to reduce bloat, but rather, encouraging careful and
thorough thinking to see if we can make things better by way of
simplification. Sometimes things need to be complex or complex
things are already as simple as they’ll get.

Page of 180 650

Remove that waffle! End users don’t want lengthy complex
documents to read.

To Achieve Content Reductionism
• Focus on the quality of what you produce, not how long it is

• If you can say it in fewer words while still getting your point
across, go for it

• Reduce at the end so that you can see how taking something
away will affect the entire picture

• Avoid technical language and jargon, it makes content
convoluted and exclusionary

• Know who you’re writing for and learn what they need/want to
know

• Use visuals to reduce the amount of text you have to write and
to improve comprehension

• Use headings to modularize your content into logical groupings

• Make things easier to read by using bulleted points instead of
paragraphs

Page of 181 650

Using the right element for the right job makes website maintenance
a lot easier.

To Achieve Code Reductionism
• Have a solid plan and idea of what you’re going to develop

• Examine your code frequently and be vigilant against
redundancy when you spot it

• Decide which technology will do the job you require with the
least amount of code

• Look at your specifications and think of ways it can be done
better with less code

• Visit your code regularly and eliminate the zombies

• Experiment with your code and see if you can simplify the
structure

• Minify your code to reduce file size

• Try to write code natively before using an abstracted layer (like
MooTools or jQuery)

Page of 182 650

To Achieve Design Reductionism
• Reduce the number of clicks and mouse movement required to

find content

• Whitespace gives breathing room for the eyes and for the
content of a website — avoid cramping things together

• Simplicity is beautiful: reduce how much information is thrown
onto the screen

• Don’t use unnecessary flourishes and widgets

• Split test and see if people are accessing things optimally

• Reuse design elements to avoid redundant objects

• Ask yourself what the value of a design element is and if it
deserves to be included in your canvas

Keep it simple, stupid (like in Occam’s razor)! Complex solutions are
much harder to use.

To the Power of 50%
One reductionist method I follow is the "power of 50%" concept. In
essence, it’s about taking whatever you have right now and then
breaking it down until you eliminate 50% it.

Page of 183 650

Whether you’re reducing your web copy in half, cutting down your
code base to 50%, or taking out half of the design elements you’ve
plugged in — the theory is you reduce the dilation of your product
and enhance the quality of what’s left.

While this may seem difficult, the guideline holds true in that, in many
cases, the amount of excess that exists in all manners of things is far
too disproportionate.

Removing 50% of a website’s excess can have profound effects on its
usability.

Keep in mind, though, that going over the top with reductionism is
possible. If you keep squeezing the juice out of what you create, you
may not have enough to drink. Therefore, it makes sense to be
thoughtful when applying reductionism.

Final Thoughts
Determining the best way to apply reductionism to your work will
differ on a project-to-project basis.

It takes time and effort to get into this mindset of being proactive in
creating less stuff, but the ideology it pertains to is grounded in a
simple truth: people hate complexity and unnecessary stress. There’s
nothing worse than being confused or feeling like you’ve lost control.

Page of 184 650

Simplified information architecture is just one way to succeed in
reductionism.

Reductionism benefits you in the long run and applying its principles
to web design is simple. While we accept that over-thinking solutions
occurs regularly and we can get a bit sloppy as a result — the
reductionist method stands as a way of improving the overall quality
of work, which results in us gaining a greater appreciation for refining
our thoughts and our products.

In your next project, think of ways to drain away some of the excess.

Sources:

• http://productiveblog.tumblr.com/

• https://twitter.com/signup

• https://getfirebug.com/

• https://www.sensible.com/dmmt.html

• https://policies.yahoo.com/ie/en/yahoo/terms/utos/

• http://microformats.org/

• https://panic.com/coda/

Page of 185 650

http://productiveblog.tumblr.com/
https://twitter.com/signup
https://getfirebug.com/
https://www.sensible.com/dmmt.html
https://policies.yahoo.com/ie/en/yahoo/terms/utos/
http://microformats.org/
https://panic.com/coda/

The Art of Distinction in Web Design
One of the hardest tasks we undertake in the user experience field is
trying to gain and hold a visitor’s attention in the right way. Distinctive
design and the ability to focus eyes where they are needed in our
web designs is a tricky task, but is something that we should have a
firm grasp of.

Understanding the artistic traits of influence and distinction allow us to
balance important details over our regular content and thus gives us
the opportunity to have a great impact and influence on our
consumers.

This article aims to highlight various factors you should account for
when using distinction in your designs.

Distinctive Design
Distractions in a design lead to a breakdown in communication and
can confuse users, paralyzing their ability to quickly determine what
to focus on or where to go next.

Distinctive design alleviates this by putting forward a few fundamental
principles which appeal to the user’s needs. Effectively at their core, it
underlines the ideal that highlighting content based on importance
rather than its position is beneficial and worthwhile.

Page of 186 650

What is distinctive design? It’s a simple goal to make important
information visible.

Principles of distinctive design include:

• Not giving prominence to objects unless it has a real need to
attract attention

• Limiting the importance you give to all content within the page
to avoid diluting the strength of the important content

• Deemphasizing less important content

• Taking the time to help guide the user’s eyes through the page
to ensure content is read in the right order

• Avoiding too much information on the page to reduce the noise

• Ensuring that what you display fits the ideas you wish to convey

Page of 187 650

Distinctive design is important to ensure the end-user can find what
they require.

While too much focus being demanded on a page (with violent levels
of distinction) can be damaging to the user experience, bland data
with no focus or selective highlighting can be equally disruptive.

It can make unassuming content (even well written material) appear
dry, dull or even hard to read.

While the majority of your content should be neutrally styled (it
should have no emphasize), there will always be content in a site that
needs reinforcing. And whether you use images, stylistic effects, color,
appearance, animation or something else, appropriate distinction is
extremely important.

Page of 188 650

Plain text files have no distinctive flourishes and is often hard to read.

Noise Margins
One key principle in maintaining a distinctive design is the function of
noise margins. Have you ever visited a website that has far too much
going on? That’s the kind of problem that can make it next to
impossible for users to find what they need.

By simply reducing the amount of information that appears within the
website design, or by breaking it down further into several pages (or
sections using headings), you can increase the way people interact
with your work because relevant information will be more
contextually visible and easier to locate.

Page of 189 650

Noise can distort the overall message of a website in unnaturally large
quantities.

Within a user interface, noise can occur in many formats. Anything
intended to grab the user’s attention in the design can be a key
component of drawing focus away from the content. Ideally, you
should have as little of these devices or interface quirks as possible.

Interface noise can result from too many elements appearing within a
website.

Page of 190 650

Even sites with little in the way of noise-inducing components can
have noise pollution problems. Text content can suffer issues if it’s not
laid out effectively. In this case, breaking large clumps of data into
tables, bulleted lists, sections and styled content can aid readability.

Images with too much on display can also become like an optical
illusion (like a "Where’s Waldo?" book) as the search for any relevant
points may be lost, which brings attention to the task of trying to
simplify diagrams, graphs and infographics to maintain a level of
neutrality and visibility.

Content isn’t free of noise either! Huge blocks of text can frustrate
end-users.

Spatial Awareness
Another principle tied closely to the aspect of noise is spatial
awareness. While it’s important to know how much content will be
displayed in a page, the knowledge of how we represent content can
help end-users identify their own surroundings.

Whilst designing with an emphasis on simplicity — introducing much
needed whitespace within even the most lengthy of documents can
allow the user to focus within those sections that hold meaningful
content. In addition, complex background images or patterns can
reduce the effectiveness of added whitespace.

Page of 191 650

Giving a website plenty of breathing room increases the awareness of
space.

Organization is the key to any goal, and conventions have evolved
within web design for just such a reason. The complexity of any
object can be determined by both how easy it is to not only know
what function or purpose it has, but also the way it is presented can
help that old friend of ours, readability.

Whitespace has a key function in not only breaking sections apart
(through space) but also in increasing awareness of how those
sections are maintained, thus making the design a more pleasant
experience which can help elements meet the impact needs of their
environment.

Page of 192 650

A well structured and organized layout will be easy to navigate
around.

While the idea of flexible layouts showcase that the amount of visible
space may differ drastically for the end-user based on the device they
have, small screens have highlighted the way in which a web browser
and it’s viewport with scrollbars dictates the cascade and priority
information gets.

It’s a well-established and notable fact that information at the top of a
website holds more priority than what is at the base of the page (due
to the order in which it’s likely to be seen). Therefore ensuring your
content is provided in a balanced manner which follows the
convention is worth considering.

Page of 193 650

Conventions show that content should be given priority based on
importance.

Drawing Focus
One of the key principles of distinctive and attentive design is based
on the idea of drawing focus to content and design elements of
importance. While making good use of space and reducing noise
levels can be beneficial to drawing focus naturally, there are ways to
grab the attention of visitors by focusing or drawing the eyes to
something onscreen.

While using such elements can be beneficial to the end-user, it’s
worth highlighting that if you fail to balance the need for attention
with the need for neutrality, you might end up counteracting your
efforts to showcase importance.

Page of 194 650

The dConstruct website draws focus towards the famous speakers
taking part.

As with many aspects of design, the idea of drawing attention can be
achieved through a general understanding of psychology (so getting
that book on the subject may pay dividends).

There are a great number of different ways people can be drawn to
content. Methods to draw focus are usually based around clever
wording (humor is effective), figures (like prices or dates), relevant
terms which are easily recognized (like the word contact), pictures
denoting what’s being mentioned (infographics), and animation
(which naturally focuses to understand an effect).

By using words that the reader can relate to, you’re more likely to
draw interest.

While natural attention can be drawn through psychology and
relating data in ways which attract the end-user, visual attention is
usually more obvious and easy to snatch focus.

Page of 195 650

An example of this can be seen through people use Flash animations
that naturally blur the relationship between grabbing attention for the
content and attracting the attention to the user interface (rather than
its content value). While forcing the attention of something through
visual effects can be a quick (if not crude) way to ensure a visitor
reads something, it should be done with some restraint and care.

Visual attention-seeking can result from animated effects that result
from actions like hovering.

Contrasting Mediums
Another key principle of distinctive design is the idea of contrast.
Color has become one of the vital components of many website
designs and the way in which shades and variants interact with each
other can determine not only the visibility of the information, but in
worse case scenarios, they could even be an indicator of underlying
problems of readability.

One of the simplest ways to measure contrast is to examine how
visible the foreground object (like text) is from background content
such as a block color or image.

Page of 196 650

The most common contrast you’ll encounter is background and
foreground colors.

As mentioned, web accessibility plays a common role in contrast as
the visibility of information in general can have consequences to who
can access the information. While low contrasting combinations may
give the impression of subtlety and softness, if contrast is insufficient,
or if two shades which are known to conflict in certain vision
conditions like color blindness are used, you may well end up with a
negative visibility issue that not only makes text less distinctive but
impossible to read. Visibility disorders are the most common
conditions that suffer from poor color contrast choices.

Accessibility is closely tied in with how well content contrasts in its
surroundings.

Page of 197 650

The benefits of contrast and the use of color psychology can draw
user attention in some unusual ways. A primary example of this is
what is known as color symbolism, where people visit a website rich
with certain shades of colors that remind them of certain things and
emotions. This richness which goes unstated can draw their focus.

Depending on the audience type and the culture of the crowd, the
interpretations of color may differ, but contrasting and
complementing the harmony of your palette will give added
emphasis and targeted emotional triggers to make use of.

Color not only evokes emotion (and attention) but it also can make
things distinct.

Highlight for Impact
The final principle I want to highlight (no pun intended) is the idea of
manually adding distinctive impact to your website through selective
effects.

So far, we have focused on taking away objects of unnecessary value
and pulling eyes to a section through emphasis and contrast. This
method takes a different approach entirely by taking something that
already has a user’s attention (like a block of text) and then boosts
certain parts of that content to increase its visibility around elements
which surround it. Of course, this is aimed at natural highlighting in
context to an existing range of content.

Page of 198 650

Just highlighting passages of text can give the content a boost of
emphasis.

Highlighting a segment of text may seem subtle, but it can be
surprisingly effective. In browsers like Google Chrome, you can
actually change the color of highlighted text which may give the
manual selection of content a better contrasting (and easier to read)
platform to work from.

Of course, apart from using a background color there’s a whole range
of ways in CSS to draw attention, such as the use of icons besides
text, coloring links of unique segments or simply changing the font,
size, color or style (bold, italics, underlines, strength and emphasis) of
the information needing added visibility.

Common stylistic traits that are anything but the default can represent
content well.

Page of 199 650

The use of color in highlighting for impact and giving distinction go
through psychology and design with ease and it can be said that only
using color selectively will give your work added impact (like how
more whitespace gives impact to less content).

However in certain cases (like children’s sites), using a sharp array of
bold colors and vibrant shades can actually draw attention well
enough for the subtle restriction of color to be a non-issue. While in
many sites aimed at adults, it’s better to keep a firm focus on color
usage, sites aimed at a younger audience can get away with such
vivid use of shading.

Using an appropriate sharp group of colors can highlight sections
uniquely.

Page of 200 650

Attention to Detail
While there aren’t any strict rules to dictate how much strength you
should give content, I find that a good balance is as follows:

• 85% of the design is neutral (with no focus)

• 5% of the design has minimal highlights (like banners)

• 5% of the design is emphasized (such as bold, italics, link colors,
and other strength)

• 5% of the design being very important content which requires
immediate priority

Though, factors which affect how the distribution balances out should
be accounted for, such as its position within the viewport, if the
content is "fixed" and the amount of strength given (like size and
color).

The above graph may help you decide how to breakdown the
distinction barrier.

Page of 201 650

JavaScript and advanced CSS selectors have improved the situation of
designing with consideration towards distinction. With the ability to
simply hide content (or restrict how much content is visible) at any
one time, and the ability to animate or control how information will
appear depending on viewport availability or device type, we can
put ever increasing efforts into making the most out of the little
flourishes we choose to have on display. While such complexity can
make us feel like we need to take advantage of it all at once, a
controlled approach can simplify our designs.

Scripting and cool CSS techniques aside, single page designs have
boomed in popularity.

The key principle of attention is that of the designers own eye for
detail, there is little excuse to make things either bland or boring even
when the content arrives in beauty and simplicity. The modern
advances of scalable designs, flexible layouts and minimalistic ethos
have laid down some great methodologies for making information
easier to access, read and use.

Taking time to consider how each event or effect may be interpreted,
your visitors’ ability to read what you produce and assigning yourself
the goal of attempting "less is more" (in context) will boost your
content’s value.

Page of 202 650

Everything in moderation is the best policy as there’s no point wasting
effort!

The art of distinction is in the way we portray information and how
the important and relevant bits manage to push their way past the
flourishes and useful engaging elements which give that content
added substance.

While the web evolves (like our tastes and abilities) it’s a fact of life
that portraying information effectively will become (as it remains) one
of the most important philosophies that the design community has to
offer.

In reflection, distinctive design gives your content the best chance of
being read, understood and enjoyed in the future — which is fantastic
if you want to be noticed!

Sources:

• http://sampleresumetemplate.net/srt-resume.html

• http://www.angelfire.com/super/badwebs/

• http://uxmyths.com/

• http://thingsthatarebrown.com/

• http://2010.dconstruct.org/

• https://shop.theoatmeal.com/

• http://www.mattdempsey.com/

Page of 203 650

http://sampleresumetemplate.net/srt-resume.html
http://www.angelfire.com/super/badwebs/
http://uxmyths.com/
http://thingsthatarebrown.com/
http://2010.dconstruct.org/
https://shop.theoatmeal.com/
http://www.mattdempsey.com/

• https://snook.ca/technical/colour_contrast/
colour.html#fg=33FF33,bg=333333

• https://www.creativehunt.com/shanghai

• http://builtbybuffalo.com/

Page of 204 650

https://snook.ca/technical/colour_contrast/colour.html#fg=33FF33,bg=333333
https://snook.ca/technical/colour_contrast/colour.html#fg=33FF33,bg=333333
https://www.creativehunt.com/shanghai
http://builtbybuffalo.com/

A Comprehensive Guide Inside Your
<head>
As web designers and developers, we pay so much attention to
what’s directly on the screen (or in our code) that the <head> of a
document and what’s inside is often considered as an afterthought.

While in many cases it’s true that what appears on the screen is the
most important part of a website (the content is what people visit a
site for), the "thinking code" inside the <head> of our documents plays
an important role.

This article will examine exactly what can fit inside a website’s head.

Mastering the Mind
The head of an HTML document is a busy area, and while it may not
have the range of elements that the <body> can flex, it can actually
engineer a range of its own elements to play vital roles in how a site
will operate or how it can interoperate with other sites.

Depending on the website, there might be plenty going on inside its
head.

So what are your options and how can they benefit your website?
Well there’s quite a lot actually!

Page of 205 650

There are ways to add useful metadata into your documents (for
search engines and other web robots to find), icons that you can
supply web browsers for extra visuals (like favicons or device-specific
icons for the iPad/iPhone), ways to allow the syndication of your
content, and even stylistic and behavioral references that include
external stylesheets and scripts.

In essence, the <head> of our HTML documents give the markup
below it extra meaning.

Thinking code has many purposes, and not all of it is regulated by an
official W3C specification!

Head Elements Gone Rogue

One thing that is unique to the head of our HTML is that it’s adoption
and usefulness is determined on convention and popularity.
Metadata, for example, relies on search engines and social networks
to acknowledge and use the data, and link references require
browsers to take advantage of them. Some things that can be
included inside the head of our documents aren’t even officially
supported by W3C specifications — such as <meta
name="googlebot"> that is a proprietary meta tag for Google’s
spiders — but because of the nature of the elements, they are valid
markup.

Page of 206 650

Independent Elements
The first elements we should talk about are those which are
independent in the sense that they just serve a single purpose.

One of these elements is so mission-critical that you are required by
HTML standards to include it: the <title> tag.

Below are five of the seven (excluding meta and link, since we will
talk about them later) head elements:

Example:

<title>Six Revisions - Web Development and Design Information</
title>

A document’s title should be unique on every page and should
adequately describe its content.

While having a title in your document is required (if you follow W3C
standards), the other tags might be of limited use to you.

<title>
This tag describes your document in the browser’s title
bar.

<script>
This tag allows you to either embed or link to JavaScript
files.

<style> This tag embeds CSS inside the document.

<base>
This tag states the base directory of files (for relative
links).

<object>
This tag can be used in the HTML head; typically it is
used inside the <body> to include page assets such as
Flash components.

Page of 207 650

For example, external stylesheets (instead of <style> tags) and an
htaccess file (as opposed to <base>) are better options for declaring
CSS style rules and declaring the base directory.

Mighty <meta> Tags
Of all the elements that appear in a document’s head, none is as
ubiquitous as <meta> elements.

These elements — while being highly desired for search engine
optimization– are more of a pseudoscience affair, as the influence
they have on search engines aren’t publicly disclosed.

With the exception of the <meta="http-equiv" content-type=""> that
specifies the document’s MIME type, they are all optional.

Getting the page’s encoding correct (through content-type) is
important.

Page of 208 650

IE6 can take advantage of a special http-equiv value called
imagetoolbar

Below are some examples of http-equiv values:

<meta http-equiv="Cache-
control">

Gives you greater control over
browser caching.

<meta http-equiv="Content-
type">

States the MIME type for layout
engines.

<meta http-equiv="Content-
language">

Dictates the primary spoken/
written language used in the
document.

<meta http-equiv="Expires">
States the expiration date of the
document.

<meta http-
equiv="Imagetoolbar">

Forces IE6 to either disable or
enable the image toolbar on
hover.

<meta http-equiv="Last-
modified">

Allows you to specify when the
document was last modified.

Page of 209 650

Example:

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />

Of course, http-equiv isn’t the only attribute that can provide useful
information. And even though keywords are presumed to be ignored
by Google and description is only used to represent SERP listings (not
acting as a ranking factor), there are no set standards for what values
should be used.

Search engines like Google can use a <meta description=""> in its
results.

<meta http-
equiv="MSThemeCompatible">

Disables (or restores) the default
theme for form components in
Microsoft Internet Explorer 6
and above.

<meta http-equiv="Refresh">
Redirects the page at a
specified time (web spiders
don’t like this one).

<meta http-equiv="X-UA-
Compatible">

Microsoft extension to dictate
compatibility mode triggering.

Page of 210 650

Below are a few more types of <meta> tags:

<meta name="Abstract" >
A quick summary of the main
points of the content.

<meta name="Author" >
Who authored the HTML
document.

<meta name="Contact" >
An email address, phone number
or physical address for the site.

<meta name="Copyright" > Copyright information.

<meta name="Description" > Describes the HTML document.

<meta name="Designer" > The producer of the site.

<meta name="Generator" >
What was used to generate the
HTML document.

<meta name="Geo.placename"
>

Indicates the town or city of
which the site is regionally based.

<meta name="Geo.position" >
Gives longitude and latitude
(semicolon separated) position.

<meta name="Geo.region" >
Uses two digit region codes to
indicate location (such as GB).

<meta name="Googlebot">
Can tell Google to Noarchive,
Nosnippet, Noindex and
Nofollow.

<meta name="Keywords" >
This element lists comma
separated words linking to
content.

<meta name="Language" >
States the primary language used
within the sites content.

Page of 211 650

Code Example:

<meta name="description" content="Six Revisions is a blog that
shares useful information about web development and design,
dedicated to people who build websites." />

While it’s true that meta tags don’t have a strict set of standards,
conventions have come into existence to help decide which tags and
values should be used.

Search engines (who pick what they feel are worth recognizing),
social networks (that use the data to categorize a site) and
organizations like the DCMI (trying to reduce our confusion) are
responsible for such efforts to help in such situations.

Metadata isn’t a science, but the geographical positioning elements
can seem like one.

<meta name="Publisher" >
Lists the name and version of the
product that built a site.

<meta name="Robots" >
Replaced by robots.txt, this
specifies page by page indexing.

<meta name="Subject" >
Indicates the subject matter to
which the content relates.

<meta name="Viewport" >
Used by Apple devices to
indicate the content window size.

Page of 212 650

Below is a list of the most widely adopted Dublin core metadata
elements:

DC.Contributor
Gives names of individuals who
contributed to the resource.

DC.Coverage
The scope covered by content (like
place names or co-ordinates).

DC.Creator
An individual responsible for the
construction of the content.

DC.Date
The point of time of which the page
or content was created.

DC.Description
Explains the resource and can include
links to a table of contents.

DC.Format
Provides the file format of the
document (for interpretation).

DC.Identifier
Links to a URL, DOI, ISSN or ISBN
which references the content.

DC.Language
Provides details of the language or
dialect used for content.

DC.Publisher
Identifies the person or group who
made the resource available.

DC.Relation
Links to a resource which relates to
the published information.

DC.Rights
Gives license data such as a link to
your terms of usage policy.

DC.Source
Highlights the source or URL of origin
for the pages cited content.

Page of 213 650

Example:

<meta name="DC.Creator" content="Jacob Gube" />

Note: As denoted in an article I wrote called "5 Web Files That Will
Improve Your Website," you can actually place all of the relevant DCMI
terms and metadata references into a handy, cacheable RDF file.
While having meta tags outside the HTML head may sound strange,
it’s a recognized way of serving repeating information (such as the
site’s creator or site’s spoken language).

The effects meta tags have is of having semantic richness in your
HTML documents, making your site all the more interoperable and
meaningful to user agents, web robots, and web services.

Luxury <link> Tags
The simple purpose of the link element is (exactly as it sounds) to
provide the browser with a location to an external resource that
relates to the document in some way.

This element has so many purposes — from providing links to external
stylesheets to indicating that RSS feeds are available, licensing of a
web page, right across to referencing a favicon for your lovely web
design.

DC.Subject
Lists semicolon separated strings that
identify a pages subject.

DC.Title
The name which indicates what the
document is known as.

DC.Type
Shows content categories, functions,
genres or aggregation levels.

Page of 214 650

Without the link element, Internet Explorer wouldn’t immediately
know this feed exists.

Whilst many link conventions have been established, none are more
grounded in the rich, textured history of HTML as the stylesheet. As
you are already aware, if you have an external CSS file that contains
your site’s CSS, you use the <link> element to reference that file within
the document’s head. This allows the web browser to load the file,
process its contents, and then apply your styles to the document’s
objects.

Below are the two primary ways you refer to a CSS file:

Example:

<link rel="stylesheet" href="style.css" type="text/css"
media="screen" />

Stylesheet
This identifies a stylesheet to apply to
the immediate document.

Alternative Stylesheet
This lists a stylesheet that can be
triggered upon a user’s request.

Page of 215 650

None of the unique style in this design would work without the CSS
file it uses.

Since the evolution of CSS3 (and the way Internet Explorer works), a
unique level of complexity for stylesheet references have been
forged. Not only can you wrap this element within conditional
comments, but with media queries, you can apply the code only if
certain conditions are met by the user agent.

It’s important that while stylesheet references take much of the glory
for the link element, we also mention additional ways to make use of
this flexible method of enhancing a site.

A classic example of how such elements can be used is defined by
the Opera browser’s "navigation bar" which actively seeks out link
references with certain rel values like index, author and home to
provide a site-wide method of linking to specific places which may
be of use to the end-user (via the browser).

While it’s only found in Opera, or through a plug-in/add-on/extension
in other browsers, it can be really helpful in the right hands.

Opera has a navigation menu that links to important document or site
sections.

Page of 216 650

Below are the various navigation links that Opera supports:

Author
Usually links to a page with author details such as
"about us".

Contents
Links to a page or sitemap which structures the
contents layout.

Copyright
References a sites copyright, privacy or terms of
usage policy.

First
Links to the first page or fragment section of a long
document.

Glossary
Sends the user to a page of terms or related
external resources.

Help
Usually links to pages where support or contact can
be gained.

Home
Links to the homepage or the primary document of
a website.

Index
Used to link to a page indexing where certain
content occurs.

Last
Links to the last page or fragment section of a long
document.

Next
Used when content is split over several pages to
forward the user.

Prev
Refers to a previous page when content is split over
multiple pages.

Search
Identifies a specific page used to perform an
advanced search.

Up
Can either link to a pages parent or go to the top of
a long page.

Page of 217 650

Example:

<link rel="index" title="Six Revisions" href="http://sixrevisions.com" /
>

Web browsers can do so much with link elements. It’s extraordinary.

Opera isn’t the only browser that can take additional advantage of the
link element. In fact, all of the below have been adopted by browsers
to reference external files which can impact either the way your
website looks or functions.

Alternate Refers to files that link to the site such as RSS
and Atom feeds.

Apple-touch-icon Identifies an icon image which can be used
by Apple devices.

Dublin (Or Meta) Primarily used to indicate an instance of the
DCMI RDF document.

P3P Links to a policy file which relays information
about user privacy.

PICS-label Assigns a content rating based on a sites
family friendliness.

Search Identifies a web browser compatible
OpenSearch document.

Shortcut Icon Links to a Favicon that is shown within the
browser address bar.

Sitemap Refers to a XML sitemap for search engines to
begin indexing.

Page of 218 650

Example:

<link rel="shortcut icon" type="image/vnd.microsoft.icon"
href="favicon.ico" />

Examples of what can be included can range from OpenID (a
universal authentication system) right through to referencing a
document or profile setup by the microformat community (such as
XFN) which relay semantic information about your pages.

Just because their effects are not visible doesn’t mean they don’t exist.

Below you will find a range of non-standard link references:

appendix Links to a file providing supplementary details
for your content.

bookmark Identifies a key fragment within the document
like #important.

chapter Indicates a specific chapter or volume of a
multi-page document.

edit Used by some CMS software to indicate a
location to edit the file.

license References the documents license (such as
Creative Commons).

openid.delegate The website address used to identify an
OpenID users account.

Page of 219 650

Example:

<link rel="license" title="Creative Commons Attribution 2.0 UK
Licence" href="http://creativecommons.org/licenses/by/2.0/uk/" /
>

As a best practice you should always consider your link options
carefully as referencing external files may increase the HTTP requests
your web pages make to render a web page, thus slowing down
page response times. Use only what you need and know why you
need them.

Wrapping Up
While the contents of a document’s head could technically be
limitless, it’s worth knowing what parts will give you a genuine benefit
and which parts will simply be extra bloat you don’t need.

As a general rule, the best principle you can follow is to try and keep
the head clean and well structured, but to also strike a balance
between keeping things simple and doing what is best for your
visitors.

While many people leave their heads as empty as possible, a better
plan is to weigh up your options and use whatever enhances the
user’s experience.

openid.server The server where verification and validation of
the details occur.

pingback Allows blogs to determine when someone
links to a resource.

section Identifies a section of the document within a
given chapter.

subsection Links to a specific subsection of a section
within a given chapter.

Start Refers to the initial title page within a
collection of documents.

Page of 220 650

Behind the scenes in the head of a web page, there are a lot of cool
things going on. Don’t overlook it.

Sources:

• https://technet.microsoft.com/en-us/windows/cc288325(v=vs.
60)

• https://en.wikipedia.org/wiki/MIME

• https://en.wikipedia.org/wiki/Web_browser_engine

• https://en.wikipedia.org/wiki/Search_engine_results_page

• http://www.geo-tag.de/generator/en.html

• https://www.opera.com/

• https://www.w3.org/TR/css3-mediaqueries/

• https://creativecommons.org/share-your-work/

Page of 221 650

https://technet.microsoft.com/en-us/windows/cc288325(v=vs.60)
https://technet.microsoft.com/en-us/windows/cc288325(v=vs.60)
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Web_browser_engine
https://en.wikipedia.org/wiki/Search_engine_results_page
http://www.geo-tag.de/generator/en.html
https://www.opera.com/
https://www.w3.org/TR/css3-mediaqueries/
https://creativecommons.org/share-your-work/

Mobile Web Design: Best Practices
The explosion in user adoption of mobile devices has revolutionized
the web. Though designing for the Mobile Web follow similar
principles to designing websites, we must consider some notable
differences.

For one, current mobile device networks don’t run in the same speed
as broadband devices.

In addition, there are also a myriad of ways our mobile web designs
are displayed in, from touch screens to netbooks, which make even
the smallest desktop monitors look like giants.

Some might argue that going mobile isn’t necessary yet, however,
what no one will disagree with is that it’s an inevitable turn in the
profession of people who make and run websites.

If you’re considering developing mobile web designs (or pushing an
existing one onto the Mobile Web), this article should help you get to
grips with the growing trend of mobile design.

Delivering the Design
One of the early elements that need to be considered for producing
a mobile-device-friendly site is the way the experience will be
delivered.

Complications in Delivery Method

The ideal scenario would be that each device simply scales and
adapts to your existing website — and some devices, such as the
iPhone, are able to because of their built-in web browser. But because
of so many devices out there, a cross-device mobile design is difficult
to make.

If you thought that developing sites that work on most web browsers
such as IE, Firefox, Chrome, and Safari was tough — try developing
one for iPhones, BlackBerrys, Palm Pre’s, Androids, Motorola devices,
Nokia devices, and — the list appears bottomless!

Page of 222 650

For desktop-based web designs, you only had one markup language
to deal with: HTML. But on the Mobile Web, there is also WML and
then platforms such as iOS for Apple devices and Android for Android
devices.

WML used to limit our design creativity, but we have more flexibility
these days.

Adapting a Web Design to Support Mobile
Devices
One option to pushing a site to the Mobile Web is to simply create or
modify your existing code and design to work well on mobile
devices, or building from scratch with mobile devices in mind.

With a bit of CSS3 (using media queries), for example, you can rescale
the dimensions of your layout depending on the user’s device.

The problem is — you guessed it — not all devices support CSS3. So
you may have to resort to using server-side device detection (e.g.
HTTP headers to sniff out the user agent) or using JavaScript (e.g.
modifying the DOM to rescale your layouts). But again, some devices
might not support these techniques.

Page of 223 650

Making an existing layout scale depending on the viewport is as
simple as a few lines of CSS3.

Redirect Mobile Users to a Mobile Version of the
Site
Another method for delivering a mobile design is to build an
especially optimized layout for handheld devices. You can build this
yourself or use a web service such as Mobify.

Compared to the first method, this is the better format for delivery as
you can create an experience specifically for your mobile users
without taking away from the experience of desktop users.

For this to work, you will have to route traffic on your site depending
on the user’s browser agent. For example, if a mobile device user
visits your site (yousitename.com), then they will automatically be
redirected to, say, mobile.yoursitename.com or
m.yoursitesname.com.

Page of 224 650

A separate mobile site can mean squeezing out the extra bytes for
faster rendering.

Tips on Redirection
Whichever route you decide to go down, it’s important that:

• Visitors know that a mobile-friendly version of your site is
available

• Visitors can have the choice between a mobile version or the
normal version

While forcefully redirecting or changing the layout for your end-users
may seem like a good idea, it can lead to frustrations, so there should
be ways in which a mobile device user can view the normal site
design, and vice versa.

A simple solution would be to provide a link that goes to either
version of a website. For example, on Six Revisions, you can find a link
to the mobile version (m.sixrevisions.com) in the footer of the regular
website, and conversely, a link to the regular website is provided at
the footer on the mobile version. Whether you’re a mobile device
user or a desktop user, you have access to both sites.

Page of 225 650

Structure and Code
The next thing that we need to consider is the structural code
(markup and styles) that goes on behind the scenes.

• Do you go with a mobile-friendly language like WML or the
XHTML mobile profiles?

• Do you build an app for iPhones, and then one for the Android?

• How does the cost and speed associated with mobile device
web browsing affect the way you should develop your design?

• What about modern standards like HTML5 and CSS3?

These are just some of the questions that we all have in this relatively
uncharted and undeveloped territory.

New devices may not support the same code as older mobile
handsets.

Choices
Choosing the right language for a mobile-friendly website is
paramount; while older devices before the smartphone revolution
only support WML (which is pretty basic) the W3C produced a
mobile-friendly version of XHTML (referred to as the XHTML Mobile
Profiles).

Page of 226 650

Luckily, due to the speed in which mobile device manufacturers have
taken to giving a complete and robust web experience, you can
often simply use regular HTML or XHTML — if you don’t want to be
held back by mobile profiles or WML.

However, it’s important to underscore the fact that it’s still worth
considering WML if you feel your visitors have old phones.
Remember, though, you’ll be adding more web zombies that we’ll all
have to deal with some day.

Use your site statistics and carry out some website analytics to help
you come up with an educated decision.

Every browser will have its own level of support (it’s not all about the
device itself).

Page of 227 650

Speed and Cost (to the User)
Ultimately, whichever language you choose, the primary
considerations you need to think about is speed and user cost.

It’s well known that most mobile internet providers cap connections,
and therefore bandwidth has now become a limited and valuable
resource.

Even worse is the issue that roaming charges outside of the country
you reside in can be expensive, which is a reason to keep the sizes of
everything on your site as low as possible.

With caps, costs and speed issues, the need to keep markup as clean,
small and standards-based as possible is important.

Roaming charges from mobile web providers can get pretty
expensive.

Because of the speed in which adoption is occurring for new
technologies, the ability and future of using languages like HTML5 and
CSS3 is not out of the question — taking into account that your code
degrades gracefully, of course.

Many providers such as Apple provide firmware upgrades that
improve how the device will function, which means older devices
may be able to take advantage of modern standards. But this situation
is analogous to IE6 users refusing to upgrade to modern versions like
IE8, therefore, ensure you always research before you implement —
then test, test and test again!

Page of 228 650

Layout Essentials
If there’s one issue that mobile devices have in spades, it’s the issue of
how to lay out your web pages. A design’s layout in mobile devices is
problematic because:

• Mobile devices come in all shapes and sizes

• Mobile devices have different levels of quality and resolutions

• Mobile devices may or may not support zooming, others scroll
content

• Scrolling in mobile devices is more difficult because of their
small screen

The goal of a mobile web design’s layout is to allow the least amount
of burden to the user’s ability to find (and quickly read) what they’re
looking.

Essentially, your layout will be important to making your mobile
presence a success.

Due to the lack of space on many screens, single column designs may
be required.

Simplicity
One of the main concepts to an effective mobile web layout is
simplicity. It goes without saying that the more information you pile
into a small space, the harder it becomes to read and the more
scrolling that will be required.

Page of 229 650

With such limited space to contend with, multi-column layouts often
break because the required space to meet the needs of the content
cannot span beyond the physical space of the viewport unless
passive zooming and scaling comes into play.

Therefore, it pays to use a single column layout.

Avoid Scrolling
Some mobile devices, like the iPhone and iPad, have the ability to
adjust a web page’s zoom depending on the orientation of the
device (portrait or landscape mode), which reduces the need for
scrolling; but not all devices have this ability.

Having to scroll down a content-heavy page isn’t a fun experience on
cell phones.

We all know that horizontal scrolling isn’t a good idea — especially on
the iPad where scrollbars don’t show up until you attempt to scroll —
so avoid this situation in your mobile web designs.

Page of 230 650

A good mobile design should have a clean layout with simple
navigation options.

Size of Navigation and Clickable Objects
Another key component is the issue of navigation and clickable
regions, which is predominantly a problem with touchscreen mobile
devices.

I’m sure if any of you have big hands, you are well aware of what a
pain typing on a handheld keyboard can be or how hard it is to click
on something small on the screen without having to zoom into it.

Ensuring that your mobile layout has large and easy-to-press links and
clickable objects will be essential in streamlining the experience.

Reducing the amount of clicks required to achieve an action — which
is a good practice regardless of whether or not you’re designing a
mobile site — is all the more important in mobile web designs.

Content Design
With the cost of browsing the web and caps on data allowances
being put in place (along with speed issues), the most costly
component of a website is the content. Knowing how to reduce
excess images, text and media can be the difference between a 50KB
design and a 2MB layout of crippling intensity.

Page of 231 650

Less is more on a mobile device; less content equals more likely to
read.

Text Content

Of all the components of a site, none plays a more vital role than the
text.

But while content is king even on handheld devices — the need for
scrolling, small file sizes, quick readability and bandwidth restraints
means that we have to reengineer our copy to ensure that it’s useful
on such devices.

If your design is simply a modification/adaptation of your existing
layout (the first method of delivery), you could decide to hide
unnecessary text, images or media (even though they’ll still
download, it will improve readability). The real advantages come
from a separate design where you can purge the marketing talk and
excessive content.

Page of 232 650

Images

When working with a small screen, large CSS background images or
byte-heavy infographics can be problematic. While some handheld
devices have larger displays where this is not an issue, and while the
ability to zoom into graphics on devices like the iPhone shouldn’t go
without some credit, unnecessary bulk for visual embellishments
certainly needs to have a good clean up.

Large images sap a lot of bandwidth; consider scaling them back for
smaller screens.

Reducing the resolution and dimensions of your images can literally
be the difference between 50KB and 500KB — bandwidth
consumption that’s worth saving.

Video/Audio

It’s inevitable in the modern web that utilizing audio and video will be
needed. Even with the bandwidth issues that exist, you shouldn’t stop
using these richer forms of content, as they can be great, especially
on handheld mobile devices that have excellent video/audio quality
such as the iPhone or iPod Touch. But just like with everything else,
moderation and smart usage is key.

Page of 233 650

There are a few considerations you should make when utilizing video
and audio:

• The format you use: Beware of Flash and other closed formats
that aren’t compatible on some devices

• The file size of video and audio: Optimize your files

• Don’t automatically download video/audio files until requested:
For bandwidth savings

• Don’t auto-play: It’s annoying; in fact, don’t do this even outside
of mobile devices

Other Issues to Consider
Finally, it’s important we address the best practices when it comes to
scripting, plugins (like Flash and Silverlight), and developing web
apps.

Knowing what to cut and what to keep will help enhance your mobile
user’s experience and also ensure that your mobile website is
functional across most/all devices.

Allow your code to degrade gracefully as you can’t rely on any
technologies success rate.

Page of 234 650

Interaction in Mobile Devices vs. Personal
Computers
An important point to make is that we interact differently with a
mobile design screen versus a regular computer screen.

With the lack of a mouse and the way our hands gesture to instigate
actions and reactions, the traditional interaction patterns we’re
accustomed to, such as hovering over a link (for example), is different.

Consideration must be given to how such functions are affected by a
change in interfaces.

Proprietary Technologies and Plugins
The move of Apple to block Flash from their devices underscores the
problems of becoming dependent on proprietary plug-in
components — closed technologies that other companies can’t or
won’t support.

Adobe Flash isn’t supported on the iPhone, iPad or iPod Touch, which
is problematic.

Apple’s decision against Flash can be a harbinger of things to come,
setting a precedence about the way mobile device manufacturers
welcome third-party technologies into their own. Other technologies

Page of 235 650

like Silverlight or Java may not work as intended — or may later be
blocked as well.

While many developers may use this as an excuse not to develop on
these platforms, the best course of action is simply to ensure that their
mobile websites degrades gracefully.

Building an app may be useful if internet access is unavailable (for any
reason).

Web Services with Persistent Internet
Connections
Even though the availability of web-based services are fantastic, I do
worry that the dependence on a constant and reliable (always on)
web connection is very much going to be a problem for web apps at
the current state of mobile device networks.

While there have been moves towards local storage mechanisms, for
now, web apps that rely on persistent internet connections could
affect mobile device users due to the capabilities of their networks.

For example, the fact that there are still "dead zones" — places where
mobile phones don’t have service — can affect the user’s interaction,
such as in cases where his or her signal suddenly drops in the middle
of performing a task.

Page of 236 650

It’s worth considering the idea of developing an app for your service
which can function both offline and online (learn how by reading this
offline HTML5 iPhone app tutorial).

Testing Your Mobile Website
If you’ve ever been into a store that sells phones, it can be downright
shocking how diverse the screens, devices and contract plans can be.

There are a wide range of emulators for simulating your designs.

With the future set to bring even more mobile devices into the fray,
and because we are at the mercy of corporations that want to gain or
maintain their competitive edge, the standardization of these web-
enabled devices is unlikely to occur.

Therefore, it’s up to our common senses to do what we can to ensure
that the widest possible audience can access and use our site in a
way that’s functional and enjoyable.

Testing with Mobile Device Emulators

With such diversity in the mobile device landscape, it goes without
question that you should test your designs on as many platforms as
you can manage. Below is a list of emulators that will simulate certain
devices for you to be able to test your work.

Page of 237 650

• Android emulator - https://developer.android.com/studio/
index.html

• Blackberry emulator - http://www.blackberry.com/developers/
downloads/simulators/

• Dot Mobi emulator

• Firefox Mobile emulator

• iPhone / iPad / iPod Touch emulator (xCode via App Store)

• WML emulator - https://www.winwap.com/
desktop_applications/winwap_for_windows.php

• LG emulator

• Microsoft Devices emulator - https://www.microsoft.com/en-
us/download/details.aspx?id=25191

• Motorola emulator

• Mozilla Fennec emulator

• NetFront emulator

• Nokia emulator

• OpenWave emulator (archive) - http://wapreview.com//?
p=3733

• Opera Mini emulator - https://dev.opera.com/articles/installing-
opera-mini-on-your-computer/

• Opera Mobile emulator - https://www.opera.com/developer/
mobile-emulator

• Palm emulator - http://www.osnews.com/story/29602/
The_elusive_Palm_OS_5_5_Garnet_emulator_for_Windows_Li
nux

• Palm Pre / iPhone emulator

• Samsung Java emulator

• Samsung Platform emulator (Android Studio)

• Windows Mobile emulator - https://docs.microsoft.com/en-us/
windows/uwp/debug-test-perf/test-with-the-emulator

Page of 238 650

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
http://www.blackberry.com/developers/downloads/simulators/
http://www.blackberry.com/developers/downloads/simulators/
http://www.blackberry.com/developers/downloads/simulators/
https://www.winwap.com/desktop_applications/winwap_for_windows.php
https://www.winwap.com/desktop_applications/winwap_for_windows.php
https://www.microsoft.com/en-us/download/details.aspx?id=25191
https://www.microsoft.com/en-us/download/details.aspx?id=25191
https://www.microsoft.com/en-us/download/details.aspx?id=25191
http://wapreview.com//?p=3733
http://wapreview.com//?p=3733
https://dev.opera.com/articles/installing-opera-mini-on-your-computer/
https://dev.opera.com/articles/installing-opera-mini-on-your-computer/
https://dev.opera.com/articles/installing-opera-mini-on-your-computer/
https://www.opera.com/developer/mobile-emulator
https://www.opera.com/developer/mobile-emulator
http://www.osnews.com/story/29602/The_elusive_Palm_OS_5_5_Garnet_emulator_for_Windows_Linux
http://www.osnews.com/story/29602/The_elusive_Palm_OS_5_5_Garnet_emulator_for_Windows_Linux
http://www.osnews.com/story/29602/The_elusive_Palm_OS_5_5_Garnet_emulator_for_Windows_Linux
https://docs.microsoft.com/en-us/windows/uwp/debug-test-perf/test-with-the-emulator
https://docs.microsoft.com/en-us/windows/uwp/debug-test-perf/test-with-the-emulator
https://docs.microsoft.com/en-us/windows/uwp/debug-test-perf/test-with-the-emulator

Simple, Small and Speedy
While much of what I discussed in this article is straightforward
advice, common sense is a major factor that dictates how we build
interfaces.

Back in the 56k modem days, we had speed issues to contend with.
We also had monitors that were limited in resolution and color. Many
ISPs capped our bandwidth and internet access. Some internet
connections would drop if you have an incoming phone call to your
house. So for those of you older-generation developers — you should
be in familiar territory.

For now — and until mobile network infrastructure improves and
connectivity is widely available — simple, small and speedy are the
three main principles we should abide by.

Sources:

• http://wapall.com/en/main.asp

• https://www.w3.org/TR/css3-mediaqueries/

• https://en.wikipedia.org/wiki/
User_agent#User_agent_identification

• http://2010.dconstruct.org/

• https://www.mobify.com/

• https://en.wikipedia.org/wiki/XHTML_Mobile_Profile

• https://www.opera.com/mobile/mini

• https://www.nngroup.com/articles/scrolling-and-scrollbars/

• https://en.wikipedia.org/wiki/Three-click_rule

• https://www.apple.com/iphone-x/

• https://www.bbc.co.uk/

• https://html.spec.whatwg.org/multipage/webstorage.html

• https://gigaom.com/2010/04/09/419-10-q-watch-adobe-admits-
apples-anti-flash-strategy-could-be-damaging/

Page of 239 650

http://wapall.com/en/main.asp
https://www.w3.org/TR/css3-mediaqueries/
https://en.wikipedia.org/wiki/User_agent#User_agent_identification
https://en.wikipedia.org/wiki/User_agent#User_agent_identification
http://2010.dconstruct.org/
https://www.mobify.com/
https://en.wikipedia.org/wiki/XHTML_Mobile_Profile
https://www.opera.com/mobile/mini
https://www.nngroup.com/articles/scrolling-and-scrollbars/
https://en.wikipedia.org/wiki/Three-click_rule
https://www.apple.com/iphone-x/
https://www.bbc.co.uk/
https://html.spec.whatwg.org/multipage/webstorage.html
https://gigaom.com/2010/04/09/419-10-q-watch-adobe-admits-apples-anti-flash-strategy-could-be-damaging/
https://gigaom.com/2010/04/09/419-10-q-watch-adobe-admits-apples-anti-flash-strategy-could-be-damaging/

CSS3 Card Trick: A Fun CSS3
Experiment
This tutorial is based on a simple animated experiment that
showcases just one of the amazing things you can create using CSS.
I’ve used no images and no scripting; everything’s done using HTML
and CSS.

It goes without saying that since CSS3 is still not supported by all
browsers, it might not work as intended; but I’ve coded this in such a
way that it will degrade gracefully on non-CSS3 browsers, including IE
(of course).

Experimenting on cutting-edge standards for the sake of innovation is
an attribute that helps us learn, and perhaps by pushing the
boundaries, we can improve our knowledge further.

A Primer on Innovation
If you ask any self-taught professional, motivation and willingness to
experiment are the two primary skills that feed their passion to
becoming better designers and developers.

While memorizing every single element, property, function and
attribute for every language is an option, knowing what they can do is
even better.

Whether you are working out how to fix a browser bug, achieving a
complex layout, or if you simply want to play around and see what
you can come up with (like this example), the ability to hone your
skills to match the situation puts you in a fantastic position for
whatever the world may throw at you.

Now that the inspiring speech about the justification behind this fun
experiment is over, it’s time we begin examining and reconstructing
this example to display how everything came together to produce
the final result.

Within this experiment we will be taking advantage of some cool
CSS3 code (which you can use in other projects) such as border-

Page of 240 650

radius, box-shadow along with the target and checked pseudo
classes.

Oh, and if that wasn’t enough, we’re even going to use a few WebKit
transformations to give Chrome and Safari (they support animations) a
progressively-enhanced experience.

So what I hope will happen is that by going over the process of
creating these CSS3 playing cards, you’ll have fun learning about
these new CSS3 capabilities.

Fragments and Fieldsets
Like with all websites, we need to begin right at the beginning with
some HTML that lays down the tracks for the experiment.

For the purpose of this example, we’ll keep the CSS and JavaScript
used inline inside the document so that you can easily use the View
Source feature in your web browser while studying the demo. But in
production, I hope you will keep your CSS and JavaScript external.

In the code block, you will find:

• An unordered list that will feature the various card suits

• A paragraph of text which simply describes the experiment on
the page

• A (very complex) web form that will hold the stylistic variables
which make up each of the cards

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="content-type" content="text/html;
charset=utf-8" />
<title>Playing Cards with CSS3!</title>
<style type="text/css">

</style>
<script type="text/javascript">

Page of 241 650

</script>
</head>
<body>

♠</
a>
<a class="fire" title="Select Hearts"
href="#hearts">♥
♣
<a class="fire" title="Select Diamonds"
href="#diamonds">♦

<form action="">

<fieldset id="spades">
<input class="card" id="spade" type="radio"
name="spade" value="spade" />
<label class="base" for="spade" title="This is the Ace of
Spades!">
A♠</
span>♠A</
em>♠
</label>
<input id="cancel1" type="reset" name="spade"
value="cancel" checked="checked" />
<label class="close" for="cancel1">Spades</label>

</fieldset>
<fieldset id="hearts">

<input class="card" id="heart" type="radio"
name="heart" value="heart" />
<label class="base fire" for="heart" title="This is the
Ace of Hearts!">
A♥</
span>♥A</
em>♥
</label>

Page of 242 650

<input id="cancel2" type="reset" name="heart"
value="cancel" checked="checked" />
<label class="close" for="cancel2">Hearts</label>

</fieldset>
<fieldset id="clubs">

<input class="card" id="club" type="radio"
name="club" value="club" />
<label class="base" for="club" title="This is the Ace of
Clubs!">
A♣</
span>♣A</
em>♣
</label>
<input id="cancel3" type="reset" name="club"
value="cancel" checked="checked" />
<label class="close" for="cancel3">Clubs</label>

</fieldset>
<fieldset id="diamonds">

<input class="card" id="diamond" type="radio"
name="diamond" value="diamond" />
<label class="base fire" for="diamond" title="This is the
Ace of Diamonds!">
A♦</
span>♦A</
em>♦
</label>
<input id="cancel4" type="reset" name="diamond"
value="cancel" checked="checked" />
<label class="close" for="cancel4">Diamonds</label>

</fieldset>
</form>
<p>Select an option above to change the suit displayed!</
p>

</body>
</html>

Page of 243 650

Unicode Characters for the Card Suits
While much of the HTML above is straightforward, there is something
worth mentioning for its value in our discussion. Within both the list
and the form, you will notice that there are a lot of strange Unicode
escape characters (such as ♦) which are embedded at various
points.

When you view the page in your browser, you will notice that these
characters represent each suit (spades, hearts, clubs and diamonds)
and therefore we can give the cards their appearance without any
images.

The list has one mention for each icon, and each form has 3 for each
(for the corners and centerpiece).

With the HTML finished, you should see the list, table and text (plus
those cool characters).

What’s With The Web Form?
You may be curious about the monstrous HTML web form. The
justification for such code is simply due to the way the CSS3 will work
with the elements. While the list element uses simple fragment links
(attached to the frameset container for each card), each card — when
it appears — contains two input elements with associated labels.

The first label contains a mixture of span and em elements (to give the
card value in the corners) and a strong element (for the big central
character).

Page of 244 650

The second label simply acts as a reset mechanism for the special
effects, i.e. when a WebKit browser is being used.

Laying the Foundations
Now that we have completed the HTML, it’s time to move onto the
CSS. To begin, we will add in all the CSS content for the web page;
and we also need to give our cards a bit of color.

The below code begins our journey into CSS3 by taking advantage of
both the border-radius and box-shadow CSS properties (with a few
compatibility tweaks).

IE Support

It’s worth noting that the filter property will not validate under W3C
CSS standards due to it being a proprietary extension for Microsoft’s
Internet Explorer; but as this is just for fun, the validation of the code is
less important. This allows us to support Internet Explorer; that’s a
good enough reason to break auto-validation in this case.

body { background: #DDDDDD; overflow: hidden; }
body .fire { color: #FF0000; }
p {

background: #FFFFFF; border: 1px solid #CCCCCC;
border-radius: 5px 5px; -moz-border-radius: 5px; -webkit-
border-radius: 5px;
box-shadow: 5px 5px 5px #CCCCCC; -webkit-box-shadow:
5px 5px #CCCCCC; -moz-box-shadow: 5px 5px #CCCCCC;
filter:
progid:DXImageTransform.Microsoft.Shadow(color='#CCCCCC'
, Direction=135, Strength=5);
font-size: 25px; text-align: center;
height: 30px; width: 600px;
margin: -35px -300px; padding: 10px 15px;
position: absolute;
bottom: 50px; left: 50%;
z-index: 99;

}

Page of 245 650

Using the above code, you should see a lovely looking paragraph on
your page!

Navigation, Simplified!
Next on the list is the navigation. For our playing card experiment, we
shall be making use of anchor fragments that will show and hide each
of the cards (as required).

While the code you’ll see next doesn’t contain the CSS3 that will
activate the navigation (we’ll get to that later), you will notice the
code that not only floats the navigation to the top-right hand side of
the screen, but also adds the same cool border-radius and box-
shadow effects. When you refresh the page after plugging in this
code, you should see that the links are now highly visible and make
use of our awesome Unicode characters.

Page of 246 650

ul {
background: #FFFFFF; border: 1px solid #CCCCCC;
background:-moz-linear-gradient(top, #FFFFFF, #DDDDDD);
background:-webkit-gradient(linear,0 0, 0 100%, from(#FFFFFF),
to(#DDDDDD));
border-radius: 5px 5px; -moz-border-radius: 5px; -webkit-
border-radius: 5px;
box-shadow: 5px 5px 5px #CCCCCC; -webkit-box-shadow:
5px 5px #CCCCCC; -moz-box-shadow: 5px 5px #CCCCCC;
filter:
progid:DXImageTransform.Microsoft.Shadow(color='#CCCCCC'
, Direction=135, Strength=5);
font-size: 50px;
margin: 0;
padding: 0 15px;
position: absolute;
right: 20px;
top: 15px;
z-index: 99;

}
ul li {

display: inline;
list-style-type: none;

}
ul li a {

color: #000000;
display: block;
float: left;
padding: 0 10px;
text-decoration: none;

}

Page of 247 650

Now we have the list hovering and ready for action (along with that
paragraph).

Styling the Aces
The most complicated part of the CSS is making the cards look like,
well, like playing cards. Using the code that follows will get you the
perfect and progressively enhancing design elements that make the
final look possible.

Code to pay attention to includes:

• The CSS3 linear gradient that fade the cards

• The reversed gradient using the mask-image property on the
center character (providing an even softer feel)

• A span label effect which rotates the bottom right reference to
make it upside down (just like real cards)

Page of 248 650

All simple but very effective.

.base {
background: #FFFFFF;
border: 1px solid #CCCCCC;
color: #000000;
background:-moz-linear-gradient(top, #FFFFFF, #DDDDDD);
background:-webkit-gradient(linear,0 0, 0 100%, from(#FFFFFF),
to(#DDDDDD));
border-radius: 5px 5px; -moz-border-radius: 5px; -webkit-
border-radius: 5px;
box-shadow: 5px 5px 5px #CCCCCC; -webkit-box-shadow:
5px 5px #CCCCCC; -moz-box-shadow: 5px 5px #CCCCCC;
filter:
progid:DXImageTransform.Microsoft.Shadow(color='#CCCCCC'
, Direction=135, Strength=5);
height: 360px;
top: 50%;
margin-top: -180px;
width: 260px;
left: 50%;
margin-left: -130px;
z-index: 9;
cursor: pointer;
font-size: 50px;
text-decoration: none;
padding: 15px 0 0 25px;
position: absolute;

}
strong {

font-size: 250px;
position: absolute;
left: 50%;
top: 50%;
margin-top: -160px;

Page of 249 650

-webkit-mask-image: -webkit-gradient(linear, left top, left
bottom, from(rgba(0,0,0,0.4)), to(rgba(0,0,0,1)));

}
em {

font-size: 40px;
font-style: normal;
display: block;
margin-bottom: -15px;

}
label span {

-webkit-transform: rotate(-180deg); -moz-transform:
rotate(-180deg); -o-transform: rotate(-180deg); filter:
progid:DXImageTransform.Microsoft.BasicImage(rotation=2);
position: absolute;
bottom: 15px;
right: 25px;

}
#spades strong { margin-left: -68px; } #spades em { margin-left:
0; }
#hearts strong { margin-left: -70px; } #hearts em { margin-left:
1px; }
#clubs strong { margin-left: -80px; } #clubs em { margin-left: 3px; }
#diamonds strong { margin-left: -60px; } #diamonds em { margin-
left: -2px; }

Note: Depending on the browser used, the effects may look different.
Chrome, Safari both support all the fancy stuff, Firefox will have the
background gradient (but the center character will look strong), and
Opera and IE will have no "worn" effects!

Page of 250 650

With some clever coding, the playing cards should now look easy on
the eyes.

Navigation and Animation
Using the code above, your cards should appear like they come from
a proper deck of playing cards. Now that we have the cards,
navigation, and paragraphs looking all pretty, it’s important that we
get each of the cards appearing on demand. And we should also do
something with the cancel and radio buttons that are hovering
around behind the scenes.

What happens next is where things get really interesting for you
WebKit users.

Page of 251 650

fieldset { display: none; }
fieldset:target { display: block; }
fieldset:target .card+label { -webkit-animation-name: scaler; -
webkit-animation-duration: 1.75s; -webkit-animation-iteration-
count: 1; }
fieldset:target .card:checked+label { -webkit-animation-name:
effectx; -webkit-animation-duration: 3s; -webkit-transform: scale(0);
}
.close {

background: #DDDDDD; cursor: default;
left: 0;
top: 0;
position: absolute;
height: 100%;
width: 100%;
z-index: 1;
text-indent: -999em;

}
@-webkit-keyframes scaler { from { -webkit-transform: scale(0); } to
{ -webkit-transform: scale(1); } }
@-webkit-keyframes effectx {
from { -webkit-transform: rotateX(0deg); }
to { -webkit-transform: scale3d(1.2, 1.2, 1.2) rotateX(-90deg)
translateZ(500px) rotate(180deg); -webkit-animation-duration:
30s; }
}

Explaining the above code is very simple. With the anchor links, we
are using fragment URLs to navigate between cards in the deck and
therefore the target pseudo class hide and show the fieldset as its ID
appears.

The .close class takes its place behind the card covering the full
browser viewport so that upon clicking the page (once the card is
hidden), you can restore the item back to its original position.

Page of 252 650

This is relative to the usage of radio buttons as we shall be using the
CSS3 :checked pseudo to animate the content for WebKit browsers
depending on the check state.

The animation and effects may not show, depending on your
browser.

The main features that WebKit users will be excited about are the two
card classes that trigger either the scaler keyframes which will make
the card zoom in (from nowhere) or the effectx keyframes that will
rotate and flip the card which makes it appear as if it’s being pushed
over (and falling off the page).

We can also add some simple effects that work alongside the
checked property to give some lovely experimental fun stuff that you
can interact with (if you use Chrome or Safari). Other browsers will
simply ignore the actions.

Note: With most WebKit animations, once the effect has run its course,
it will be reset to a default point. Because this example required the
effect to remain permanent (until directed by the user otherwise), I
made use of the checked state pseudo and radio buttons to ensure
the effects were held firmly in place.

Page of 253 650

Dealing with Internet Explorer
OK, so remember in the beginning when I said I’ve used no scripting?
Well that’s only partially true.

Because IE doesn’t yet support all these things, we need to use
JavaScript so that at least our IE users will have a decent experience.

Of course, if you don’t care about IE — after all, this is an experiment
for cutting-edge browsers that support CSS3 — then, yes, this CSS3
experiment uses no scripting whatsoever.

Luckily, because IE — like other non-WebKit browsers — don’t support
the CSS3 animated effects, the need to deal with the checked state (in
CSS3) is moot since the effect will be non-functional anyway.

However, one thing that should be available is the target pseudo so
that IE users can change the suit of the playing card. Using a small bit
of conditional JavaScript, we can replicate the effect with little impact
on the browser. There’s also a fragment redirect in the script to help
browsers load the first card.

function bootup(){
if (location.hash == "") { location.hash="#spades"; } var tds =
document.getElementsByTagName("a"); direct();
for(var x=0; x < tds.length; x++){tds[x].onclick = function()
{setTimeout(direct, 1);};}

}
function direct(){
/*@cc_on @if (@_jscript_version > 5.6)

var counted = document.getElementsByTagName("fieldset");
for(var x=0; x < counted.length; x++){ counted[x].style.display
= "none" }
document.getElementById(location.hash.substr(1)).style.display
= "block";

@end @*/
}
window.onload=bootup;

Page of 254 650

The example should now be complete and have some neat special
effects!

While the above code should be enough to get the basic effect
working on the latest version of IE, its worth highlighting that I didn’t
spend much time attempting to get the effect functional on really old
browsers like IE6.

Because this is a proof-of-concept demonstration — and because it
exists just to play with what’s available in up and coming standards —
there was no incentive to try and fire the effects onto every browser.

It’s worth saying, however, that if you do intend on using any of this in
a production site, you should support the browsers your visitors use.

Playful Innovation
Just a few years ago, the ability to produce such a textured playing
card that looks like an image would not have been possible without
the use of images. The animation effects, without scripting or Flash,
would have been beyond most people’s dreams.

Our proof-of-concept shows the benefits of modern standards, and
what the future is for us web designers and web developers.

The need to keep innovating and pushing our browsers to the limit is
an important part of the web’s evolution.

As a web professional, I always try to spend time learning and
examining my own abilities to see what unique solutions I can
produce. Ideally, after reading this, you will be inspired to experiment
on your own.

Page of 255 650

Sources:

• https://en.wikipedia.org/wiki/List_of_Unicode_characters

Page of 256 650

https://en.wikipedia.org/wiki/List_of_Unicode_characters

Designing By Numbers: Data Analysis
for Web Designers
Judging what’s best for an audience is never far from the web
designer’s mind. The ability to predict whether a web design will soar
like an eagle or sink like the Titanic is among the most subjective and
complex measurements you will encounter.

While resources that explain best practices exist, and your visitors
contacting you about serious issues and offering you feedback
relating to your site will occur if you have the proper mechanisms in
place — it’s ultimately your responsibility to be proactive and
research, investigate, and determine the what, why and how to
ensure widespread usability.

Designing by Numbers
Before we examine the types of statistical information you should be
looking at — and the relevance they have to your web design
projects — we first need to go over the 3 single-word questions that
relate directly to all the design decisions you will make.

These 3 questions are ultimately at the heart of your research,
analytics and motivation behind designing by the numbers.

What, why, and how is a simple design process that:

1. Defines what the issue is

2. Proves why it is an issue

3. Determines how to fix the issue with the optimal solution (if it is
an issue)

What?
Of all the questions that may enter the mind of a web designer,
"What?" is probably the word that relates to the task at hand. The
process of understanding relevance and the usefulness of information
explicitly relates to the decisions we undertake.

Page of 257 650

• What do site users need?

• What things frustrate site users?

• What can I do in this design to accomplish the site’s objectives?

• What’s wrong with the site?

• What’s right about the site?

• What can be made better?

Asking "What?" will yield to a lot of information that will help you
make optimal design decisions.

What your audience requires is a fundamental principle of designing
by numbers. Get Satisfaction is a feedback tool you can use to help
you design by the numbers.

Why?
Next on the list of list of determining factors is the question of "Why?"

Because making changes or implementations beyond what you
initially set out to achieve may cost time, money or resources — the
ability to back up your ideas with hard data and facts will be enough
to even make the bean-counting bosses go weak at the knees and
take your professional guidance and ideas more seriously.

Page of 258 650

• Why are people not using the comments?

• Why is the community participation on the site low?

• Why are users having trouble finding what they need?

• Why do we need to support Internet Explorer 6?

Knowing what needs to be done is one thing — knowing the
justification to why it needs to be done is another.

Reasons for why cross-browser support should be implemented can
easily be seen when you calculate the percentages of users that use
certain browsers.

How?
The last single-word question is "How?" which makes sense in that
once you know what needs doing and why it’s required, the method
of actualizing the "What" is important.

• How should I go about increasing user engagement?

• How can this design improve community participation?

• How can I fix the issue of users not finding the product they
need?

• How can I create a design that works in Internet Explorer 6?

Page of 259 650

Statistical/Gathering Methods
When determining the best course of action for your visitors, there are
3 essential statistic types that will come into play in helping to answer
the "what" question. (We shall come to the "how" and the "why" later
on, so don’t worry!).

Each of these data gathering techniques have their own benefits and
pitfalls so there isn’t ultimately a perfect solution.

However, designers wanting a well-rounded experience would be
better off using a mixture of all 3 as they not only give you a range of
quantitative results (raw numbers) but also qualitative research (such
as open-ended responses and feedback).

On-Site Data
On-site data are the kind of information you obtain from website
analytics software and monitoring user activity on your website.

While this type of data is often ideal in that they relate directly to your
visitors, it often takes a while for activity on a new website to build up
— and as such, depending on these alone may leave you in the dark
as to your visitor’s basic primary needs upon launching the service.

In sites with limited or no traffic, or sites that are still in development —
analytics software fails because there is no (or limited) data sources;
you’re pretty much in the dark. 

Page of 260 650

Most websites have some kind of visitor tracking mechanism installed,
such as Google Analytics.

Third-Party/Generalized Data
Independent data are often the most useful to new websites, usually
produced by large firms who provide demographic services like Net
Applications or W3Counter.

These third-party data-gathering sites offer a glimpse at the general
population, and by that, it will include useful details such as the
browsers and devices they use, their country of origin, and so forth.

On-Site data gathering methods is going to be more accurate and will
reflect your particular situation much better — for example, a web
development blog will have a different audience than a cooking
blog) — but accounting for independent statistics can aid you by
providing a baseline to work from, especially if you have no user
base.

Page of 261 650

There are plenty of statistics on the web, you just need to look! The
figure above shows statistics from A List Apart’s survey of web
designers.

Social Data
Socially-sourced data are a relatively new concept that has come out
of the rise of networking sites like Facebook or Twitter, where people
can promote or discuss your creation through an external site.

While there are still a large number of people who aren’t interested in
the "social" aspect of social networking, the importance of leveraging
these statistics of what visitors like, dislike and their comments
attributing to such information can actually be more useful (in different
ways) to the conventional number-based statistics from analytics
packages.

Page of 262 650

Social networking can provide you with useful feedback to work with.

Designers Demographics
Now that we have covered the "what", we need to examine the "why"
(and by association) the need to focus our attention on all the pretty
percentages, pie charts and graphics that appear everywhere.

Ensuring your visitors can use and enjoy their experience with your
web design is important and determining how we can provide that
experience will all be down to using the statistics methods above and
then narrowing the focus down onto what is most relevant for your
audience.

While pretty numbers may seem impressive on their own, they’re not
worth anything if they don’t speak to your niche, so successful
sourcing of your data is critical.

Page of 263 650

Review websites are notorious for having subjective criteria of
questionable validity.

If you’ve exhausted local statistics and have a general idea of the
visitors you’re getting (and perhaps where they found you), and if
you’ve gone further afield to seek out related demographics relating
to research on an area which affects your niche, its worth going
beyond the number crunching and seeking out "intelligent hits" that
may help guide your decision making. Asking your community (or
perhaps your competitions if you don’t have one!) what would
enhance the experience can be great, just don’t try to please (or
annoy) everyone and only implement what will benefit your users!

Page of 264 650

Getting to know your visitors can simply be a matter of knowing how
to communicate.

With all of this information in regards to what you’re investigating the
"why" (as in why changes need to be made) will become quite
apparent. While it may seem natural, it’s quite easy to become so
fixated on the number of visitors or re-tweets we get, that we actually
ignore the most important thing a statistics package (or some solid
research) can tell us – that our visitors will have their own specific set
of needs and requirements that need addressing. As a final point on
the matter of "why", if we don’t actively seek out ways to improve
ourselves, we can’t hope to gain new customers.

Visitors may have JavaScript disabled which could leave them
excluded from statistics.

Page of 265 650

A Quick Measurement
The next thing to take into account is how to filter the information
once you’ve collected it (which meets the "how" element). Having lots
of statistics and ideas may help, but filtering the stream of data will be
critical to making sense of the best route to take in fixing a common
problem or deciding the next step. The simplest way to prioritize your
data is to follow the below, the higher up on the list the item is, the
better and more potentially useful and reliable your research will be.
Once the best information is extracted, you can refer to the numbers
when making decisions for the design.

Determining the quality of your information is a mission critical part of
the process.

Importance of Location:

• Local

• Independent

• Social

Importance of Type:

• Statistics

• Research

Page of 266 650

Importance of Reliability:

• Proven

• Trends

• Unproven

Importance of Margin:

• Significant

• Proportionate

• Insignificant

Note: Using the above, a locally sourced bunch of statistics that are
proven (by a significant margin) to be the best course of action would
ultimately be the peak of what you can gather. Though as your
research will lead to talking with customers, individual needs should
be accounted for as well.

Variable Considerations
Before rounding up this article, it’s important that we consider the
variables which may impact your statistics. While it’s great that there
are plenty of studies that may assist you in decision making (like how
to build a perfect font stack or what browsers you should support), it’s
very important that we highlight the issues that will break down the
cold harsh numbers and give you a little more to work with. Without
making this article particularly heavy going (which isn’t the intention),
the two types of variables you want to consider are mechanical and
personal, and both relative to the visitor.

The first of these (mechanical) will directly affect the way in which
your visitor interacts with your site, this isn’t as a result of their physical
being, but more of their circumstances and equipment. In web design
it’s obvious that the device used, the OS installed, the browser used,
the scripting or plug-ins available or something else will affect their
experience. While these are usually listed as independent statistics in
packages, they are often related to each other in that a single user will
contribute to a number of these breakdown listings, thereby it may
directly affect the results.

Page of 267 650

Nothing forces greater demands on a website than the range of
browsers that exist.

The second and probably one of the more important factors are the
personal variables. The reason why these variables are so important is
because they will often not appear in statistics packages and require
you to undertake independent research to get the numbers or
determine the viability of catering to their needs. Such factors include
the accessibility level being required, the usability of a site (which
won’t be a number) and the findability of information. While harder to
pin down, it still makes sense to account for such variables as they
directly and quite dramatically affect visitors.

Note: Error Margins also play a part in statistics, research made by a
human rather than a computer can be subject to biases, errors and
omissions – some of which may go unnoticed. The significance of
information can also fluctuate depending on the audience who visit
the site at any given time.

Page of 268 650

Research Matters
While this article is not a comprehensive guide to research and
statistics (there are entire books on the subject), the importance of
knowing your visitors is showcased. When you come to build a site or
implement a new feature, it’s important that you do your homework
to avoid falling into a pitfall that could have otherwise been foreseen
earlier. Taking the time to understand how products like Google
Analytics work, what their weaknesses are and how to get a well
rounded overview and an intimate knowledge of your visitors gives
you the best possible chance of hosting a great experience.

It’s also worth noting that while this article does indeed focus on the
numbers and opinions that lead to decision making, it’s very
important not to forget the individual as a person who visits your
realm (no person should be directly treated as a statistic, they are all
just as important to the full equation as each other) and while
numbers are great for measurements, opinions often lead to the most
amount of innovation. With this article highlighting the benefits of
research and accounting for more than a personalized view of a site,
hopefully you will go on to target a loyal audience in the future!

Sources:

• https://getsatisfaction.com/corp/

• https://en.wikipedia.org/wiki/Usage_share_of_web_browsers

• http://www.netapplications.com/

• https://www.w3counter.com/globalstats.php

• http://alistapart.com/articles/2007surveyresults

• https://webhostinggeeks.com/

• https://polldaddy.com/

• https://www.google.com/analytics/

Page of 269 650

https://getsatisfaction.com/corp/
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://www.netapplications.com/
https://www.w3counter.com/globalstats.php
http://alistapart.com/articles/2007surveyresults
https://webhostinggeeks.com/
https://polldaddy.com/
https://www.google.com/analytics/

The Science Behind a Single Page
Website
We have all come across them whilst browsing the web, and many of
the examples that exist are quite awe-inspiring, the single page
website is a paradigm of the modern web in which everything that
needs saying can be placed in a single document.

Whilst the single page layout option can lead to overwhelmingly
large documents of endless scrolling, a series of clever mechanisms
using modern standards and techniques such as CSS3 and Ajax have
burst onto the scenes, offering a method of simply giving information
as they’re required.

This article is on single page websites that use HTML, CSS and
JavaScript; we are skipping the discussion of Flash-only websites,
which can technically be classified as a single page website as well.

Once Is Enough for Me
It’s understandable that not every type of website will be well suited
to having "one page to rule them all," however, a common trend that’s
seen especially in portfolio websites shows that certain sites can
benefit from a simple, yet still multi-faceted, single page.

The idea that a website can be created with just one page seems
crazy, but with our industry shifting towards advocating simplicity for
ease of use, single page web designs have become a viable and
effective option.

Page of 270 650

CSS Zen Garden is a classic example of a single page with multiple
layers of interesting bits.

Trends and Tribulations
While traditional designs with multiple pages will always have its
place, there are a number of advantages that give the single page
website some potential uses for your own projects.

The ability to construct a site that is entirely self-contained gets a bit of
getting used to, and involves a lot more thought and planning. Some
questions you have to answer are:

• Will a single page meet the project’s requirements or will
multiple pages be better?

• How do you organize the content?

• How does the navigation work?

• What content do I need and what can I leave out?

Page of 271 650

Benefits of Single Page Websites
Single page designs have the following advantages over multi-page
sites:

• No page refresh when navigating the site (content is either in
the page or loaded using Ajax)

• User experience can be improved because navigating through
content is quicker and more responsive than having to go to a
new web page

• Easier maintenance because you only have to maintain one
web page

• You can design for quality over quantity — instead of having to
design multiple page layouts for different types of site content,
you can focus on just one solid and high-quality design

• Your Google PageRank applies to the whole site

• Higher core content density for search engine spiders

• Distinction from most other websites; single page websites are
less common, and can thus leave an impression on your site
visitors (and that’s why they are popular on portfolio sites)

• Easy solution for simple "brochure" sites that serve one product
(i.e. iPhone app) or one purpose (i.e. a designer’s work)

• Preferred solution for web apps designed for the Mobile Web

Page of 272 650

Once the page has loaded, there’s nothing else to download.

Disadvantages of Single Page Websites
Single page designs have the following disadvantages against multi-
page sites:

• Potentially large file size of the page

• A requirement for scripting or CSS3 support if you want to
stand out

• Tabbing through elements can become trickier (for
accessibility) because there might be plenty of content on one
page (though this wouldn’t be a big problem for well-
structured markup that use headings and other best practices)

• Producing the design is more time-intensive because it
involves a lot more thought and creativity to be able to fit
everything in one page and to devise a great interaction
design

• The page can take much longer to load if you have a lot of
content

Page of 273 650

File size is an important issue to contend with, especially where Flash
is concerned.

The truth is that whenever you implement a specific design pattern,
chances are that you will not be able to please everyone. While single
page sites can be made to be 100% accessible and highly usable,
there will be situations where a single page site is not a good option
for you. For example, an e-commerce site such as Amazon.com
wouldn’t be able to pull off a single page web design successfully
because of its vast amount of content — and that’s fine because it’s
better when these types of sites are multiple pages.

Production Theory
Before we look at some lovely single page designs, it’s worth taking a
few moments to explain the various mechanisms used to produce
such a site. Your emphasis should be on keeping file sizes as slim as
possible and about a thoughtful way of presenting and structuring
your web page. Think about user flow and interaction design — how
does a user move from section to section of the page?

Here are some techniques that are used in single page websites. It’s
important to note that they are not mutually exclusive, so you might
find yourself using them in combination.

Page of 274 650

Manual Scrolling
The first mechanism implemented by conventional single page
designs is to display all of the content on the page, structured
logically and laid-out in sections.

The way people navigate through the content is simply by using the
native scrollbars in their web browser. While this method is simple to
implement because it’s just a regular web page with no special
interaction, it’s also probably the most boring of the options.

Sites that have no need for fancy effects could easily produce a
simple and beautiful single page layout.

CSS3 Interaction
The next mechanism for navigating through content on a single page
website worth mentioning is CSS3. With the latest version of the CSS
specification, the ability to go beyond existing CSS2 selectors allow
for a more unique single page experience. Most notably, you can do
interesting, interactive things that deal with content by using CSS
transition properties for animation and messing about with the :target
and :checked pseudo-classes.

Page of 275 650

For example, the ability to use the :target pseudo-class (combined
with anchor links) gives you the option to make the targeted section a
different color or to give it a different background-image.

Using CSS3 pseudo selectors, we could form a powerful cross
browser "paneling" system.

JavaScript
Finally, we have good old JavaScript, which has been serving us a
widespread range of functionality since the web’s early days. With the
popularity of web development JS frameworks like jQuery, the ability
to swap out existing on-page content has never been easier, and with
the rise in Ajax, calling content as it’s required has an even greater
potential for eliminating the need for page refreshes. Take note,
though, that there are accessibility and SEO concerns with content
that is remotely loaded.

You can also use animated scrolling to sections of the web page
using JavaScript — a step up from manual scrolling and using anchor
links. For example, check out the jQuery ScrollTo plugin. You can see
smooth scrolling in action via Laco Janic’s portfolio (click on the
primary navigation links such as "identity & print" or "about").

While it’s not an option for the poor souls with no scripting
knowledge, using JavaScript is certainly the most flexible and robust
method out of all three.

Page of 276 650

jQuery amongst other scripting frameworks offer easy to implement
content swapping.

A Showcase of Single Page Web Designs
As we have now finished examining the general ways that designers
and developers go about creating a single page site, it’s worth
looking at some great single page web designs for inspiration.
Perhaps these designs will give you some ideas and inspiration!

Camera+

Page of 277 650

Webdots

Pear Hosting

Playmation

Page of 278 650

Enrichmint

Basil Gloo

Fran-boot

Page of 279 650

Milk ‘n Honey

Launch List

Eric Johansson

Page of 280 650

Hello Kavita

Made By Sofa

Eclectique Designs

Page of 281 650

The Dollar Dreadful

Elementic Interactions

Richard Turnbull Design

Page of 282 650

James Lai Creative

Tim Van Damme

10 20 Concepts

Page of 283 650

Fish Marketing

Banjax

Silverback

Page of 284 650

Zee the Designer

Tyler Termini

Aaron Kato

Page of 285 650

Joni Korpi

Molly Yim

Lataka

Page of 286 650

Jason Reed

Josh Minnich

Is Single Page Websites for You?
The great thing about the web is that it’s constantly evolving, and by
principle, the way we build our designs will mould itself to these shifts
in our audience’s tastes and needs.

The need for lightweight, compact, self-contained websites and web
applications due to the Mobile Web will only increase the
deployment of single page websites. All single page layouts can be
made to look totally unique. While not to everyone’s taste, they are
well worth a consideration in your web design projects.

Page of 287 650

Sources:

• http://www.csszengarden.com/001/

• https://authenticstyle.co.uk/

• https://www.w3.org/TR/selectors-3/#target-pseudo

• https://www.w3.org/TR/REC-html40/intro/intro.html#h-2.1.2

• http://jquery.com/

• https://github.com/flesler/jquery.scrollTo

• http://camera.plus/

• http://basilgloo.com/

• http://www.narfstuff.co.uk/portfolio/

• http://humaan.com/checklist/

• http://madebysofa.com/

• http://www.dollardreadful.com/

• https://1020concepts.nl/

• https://silverbackapp.com/

• http://www.jonikorpi.com/

Page of 288 650

http://www.csszengarden.com/001/
https://authenticstyle.co.uk/
https://www.w3.org/TR/selectors-3/#target-pseudo
https://www.w3.org/TR/REC-html40/intro/intro.html#h-2.1.2
http://jquery.com/
https://github.com/flesler/jquery.scrollTo
http://camera.plus/
http://basilgloo.com/
http://www.narfstuff.co.uk/portfolio/
http://humaan.com/checklist/
http://madebysofa.com/
http://www.dollardreadful.com/
https://1020concepts.nl/
https://silverbackapp.com/
http://www.jonikorpi.com/

Improve Site Usability by Studying
Museums
Using a website should be easy. It should be intuitive. We should
know what button or link to click to get to where we need to be.

But sometimes websites can be insanely confusing. Just look at the
Apple app store, for example. When seeking out apps to install on my
iPhone — which as an open source advocate and proponent, I feel
incredibly guilty with, by the way — I find myself endlessly frustrated
at the general lack of good navigation in iTunes, making the process
of discovering the apps I want more difficult than necessary.

Trying to browse all of the apps on iTunes is next to impossible!

This article aims to underscore lessons we can learn from museums
and art galleries in relation to website usability.

A-Maze-ingly Unfriendly
Many websites are a labyrinth (or maze) of endless tunnels and
pathways that have no clear direction — and getting lost or confused
is the resulting outcome. Simply put, things really need to change if
your website visitor feels like your content organization is like
traversing a maze.

Page of 289 650

Navigation menus for visitors can turn from helpful aids to monstrous
mazes; try to keep dropdown menus short.

Perhaps it seems a little unfair or extreme to compare most site
navigation designs to a maze — but the problem exists in many sites
and is something we need to tackle. It’s quite normal to see site
navigation that is confusing, leading to dead ends or paths that lead
you away from the exit.

Page of 290 650

Don't make your navigation complex like this. Navigation isn't a puzzle
game!

What We Can Learn from Museums and Art
Galleries
I remember going to the Natural History Museum (in London) on a
school trip. While the endless exhibits were fascinating — what
teenager wouldn’t get a kick out of weapons, naked statues and dead
people on display — the one thing that impressed me was how the
museum, for such a huge building, was incredibly easy to navigate.

Page of 291 650

There’s nothing like having enough space to appreciate art and
websites alike.

Whilst the brick and mortar foundations of a museum or art gallery
may not seem, on the surface, like ideal candidates for usability,
navigation, and layout design inspiration, indulge me as I try to make
the connection.

The Connection
What is it about museums and galleries that encourage people to
spend time exploring the many rooms and walkways in these
humongous buildings? It’s nothing more or less simple than the
exhibits.

In terms of the web: our content, site features and service offerings
are the core exhibits that we offer.

Page of 292 650

Giving each of your products its own "room" can aid you in giving
them enough distinction.

Content appears in many forms such as text, images, diagrams, videos
and audio. While most art galleries focus on showcasing images and
museums on historic objects, the idea that we can feature, display,
organize and lay out experiences to be browsed at the user’s leisure
is a central point of design theory and the content management
process.

Showcasing images effectively will result in a more streamlined
experience.

Page of 293 650

Components of Museums and Art Galleries
So what is the secret behind the success of a museum’s navigability?

Featured Exhibits

Source: Wikipedia

Museums highlight special exhibitions and actively promote them by
ensuring that display items are in an accessible and easy-to-find
region of the building.

They might have special posters outside the building, they may even
advertise these exhibits off-site (such as in the local newspapers or in
their website). As these are of special interest, they are publicized
quite heavily.

Signs and Directions

Jimmie Rodgers Museum Sign. Source: Wikipedia

Page of 294 650

By having signs around the establishment, visitors can accomplish the
most fundamental tasks — from locating that exhibit you wanted to
see, to finding the closest public restroom.

Brochures and Reference Booklets

Having signs in a gallery or museum is great if you just want to
provide simple directions, but many institutions have booklets or
leaflets that are more content-heavy for individuals requiring more
information.

Maps

Estonian Open Air Museum map. Source: Wikipedia.

A map is useful for providing directions visually towards certain
locations. Some museums and galleries offer paper maps and other
aids (sometimes even apps for mobile devices) to guide new visitors
around.

Page of 295 650

Human Assistance

Every now and again, visitors will need more than what’s offered by
default; when they have inquiries that require a tailored response. It is
at this stage where human assistance comes in. Most places you visit
have members of staff roaming around to help patrons or stationary
informational booths in case someone needs help through human
interaction.

Interactive Exhibits

Science Centre Port Blair Biotechnology Gallery. Source: Wikipedia

An increasing amount of museums offer interactive displays to make
the things being presented to the visitor engaging and fun.

Page of 296 650

Space and Clarity

Source: Wikipedia

There is nothing more annoying than an overcrowded location.
Whether it’s too many items put too closely together or too many
visitors — ensuring that every item gets the space it warrants so that it
is distinct from other pieces is an effective way of laying out museums
and art galleries.

Souvenirs

Souvenirs from USCG Museum Northwest, Seattle, Washington.
Source: Wikipedia

Most museums have some kind of store that sells memorabilia and
trinkets related to the museum. These items create a tangibility to the
visit, and may even prompt future visits.

Page of 297 650

Producing Digital Equivalents of Museum
Components
Digital equivalents for these museum/art gallery components may
feel like an imaginative stretch, but let’s give it a shot.

Website Equivalent of Featured Exhibits

Featured exhibits are the first item on the list, and it won’t surprise you
that feature sections can be effective in design because you see it
quite often. From content sliders and module tabs, to special limited-
time offers and displaying fresh site content prominently, these
various site components can draw attention to your featured items.

Page of 298 650

The above image shows precisely how you can feature prominent
content.

Remember how I said museums sometimes even promote featured
exhibits outside of their physical location? The digital equivalent of
this is advertising your "exhibits" in other sites and services, such as
Twitter, Facebook, and AllTop, all of which can help enhance
findability.

Website Equivalent of Signs and Directions

Signposts and directions have their own digital equivalents too. Many
websites have help documentation and navigation aids like
breadcrumbs to help you locate the things you need. Great designs
will also use the art of distinction and call-to-action buttons to draw
attention and guide the user’s eyes towards what they might be
looking for.

Page of 299 650

Chapters indicate how far you’ve travelled through a large document.

Website Equivalent of Brochures and Reference Booklets

The equivalent of reference booklets and brochures on the web are
help doc pages, FAQ pages, video tours, and so forth.

Offering guided tours or quick start tutorials can help engage visitor
understanding.

Page of 300 650

Website Equivalent of Maps

The most obvious manifestations of physical maps on a website are
sitemaps and, to a large extent, your primary navigation menu.
Creating a visually illustrative diagram of your site’s layout could also
be components that help your users navigate around your site.

Providing a site map showcases the amazing array of content your
site holds.

Website Equivalent of Human Assistance

A lot of businesses may say that it isn’t cost-effective to use a member
of their team for live support, but they could have fixed hours for
when live chat support is available to site visitors.

Otherwise, asynchronous communication methods such as a contact
web form or a help desk support system can also be the website
equivalent of informational booths that are driven by people.

Page of 301 650

Live chat software can be useful as a form of human assistance to site
visitors.

Website Equivalent of Interactive Exhibits

Site interactivity can, just like their offline-counterparts, engage and
provide more value to the experience of the user. You can have game
mechanisms to enrich the user experience, live chat widgets so that
visitors can interact with one another, and other simple strategies for
creating a richer and more engaging experience.

Giving your users something to interact with provides a more
engaging experience.

Page of 302 650

Website Equivalent of Space and Clarity

Space and clarity on websites require a solid understanding of design
principles. Thinking about Gestalt principles (and more specifically,
the concept of proximity), visual hierarchy, the use of negative space,
reductionism, all the way down to the basics of clear and legible web
typography can lead to effective use of space and clarity that, in turn,
can lead to a better and more user-friendly experience.

Breaking information down into manageable segments help
progressive navigation.

Website Equivalent of Souvenirs

People like and recommend free stuff to others, and if these "freebies"
are branded or help promote your site, then in principle, the site’s
visibility and illustriousness increases.

Souvenirs on websites could be custom browser extensions (for
example, Mashable, a social media blog, has a Google Chrome
extension), digital downloads (Six Revisions has freebies that are
useful to its audience), or anything that allows your site visitors to
retain something from their visit and reminds them to come back.

Page of 303 650

Giving some branded freebies away will help trigger the user’s
memory of your website.

Structure from the Chaos
What all of this really boils down to is that it’s important to pay
attention to the site visitor’s experience. All these concepts and
components really lead to a single idea: A usable website is effective
at providing what the visitor needs in a pleasant and near-effortless
manner.

Why not visit a museum or art gallery yourself and see what other
things you can apply to your profession? Maybe look at how they lay
out their exhibits or observe how visitors interact with the various
components provided to them.

The journey of an experience should be less about getting from
points A to B (even with people in a hurry), and more about the things
in between that make the experience pleasantly memorable.

Page of 304 650

Sources:

• https://tapbots.com/

• http://advuli.com/

• https://www.smashingmagazine.com/2009/06/module-tabs-in-
web-design-best-practices-and-solutions/

• https://www.smashingmagazine.com/2009/03/breadcrumbs-
in-web-design-examples-and-best-practices/

• http://veerle.duoh.com/

• https://mashable.com/2010/06/03/mashable-google-chrome-
extension/#GlhqYaIj1Pq1

Page of 305 650

https://tapbots.com/
http://advuli.com/
https://www.smashingmagazine.com/2009/06/module-tabs-in-web-design-best-practices-and-solutions/
https://www.smashingmagazine.com/2009/06/module-tabs-in-web-design-best-practices-and-solutions/
https://www.smashingmagazine.com/2009/03/breadcrumbs-in-web-design-examples-and-best-practices/
https://www.smashingmagazine.com/2009/03/breadcrumbs-in-web-design-examples-and-best-practices/
http://veerle.duoh.com/
https://mashable.com/2010/06/03/mashable-google-chrome-extension/#GlhqYaIj1Pq1
https://mashable.com/2010/06/03/mashable-google-chrome-extension/#GlhqYaIj1Pq1

Human Behavior Theories That Can be
Applied to Web Design
Humans are logical creatures, and as surprising as this might be, when
we visit a website our minds make a series of decisions that affect the
actions we take. The ability to reason enables us to form judgments,
reach conclusions and make decisions. If, on the web, we weren’t
able to think on the spot and then take action, we would trap
ourselves in crippling situations of mindless clicking.

Behavioral psychology is an advancing field, and we web ninjas need
to understand something about psychology in order to make usable
websites. If we understand human needs and emotions — how we
interpret what we see and how we choose to act — then we will
better understand our site users. We’ll be able to choose and create
meaningful layouts, typography and colors.

This article is no substitute for a degree in psychology (so don’t give
yourself an honorary Ph.D. after reading this). Also, the items
mentioned here don’t account for every circumstance, because no
two people are the same. Yet by understanding the theories outlined
below (there are no hard facts in psychology, just theories), you can
better understand how your design work will be perceived and used.

Empowerment and Maslow’s Hierarchy
Giving your visitors a sense of growth and increasing their self-esteem
is essential. One of the main problems faced by Facebook, YouTube,
Twitter and many other social networks is how to get visitors to
participate and feel that they are welcome and safe.

The "silent visitor" (or lurker) has existed for many years and makes up
the majority of people who visit the average website. This type of
visitor usually isn’t socially inclined; a number of your audience
members will not go any further than to visit and read, which isn’t very
encouraging if you want to establish a community.

Page of 306 650

StumbleUpon encourages people to make friends and invest
themselves socially.

For a design to work, it must meet the needs of visitors–although
what’s important to visitors is up for debate and could drastically
change from project to project. Some needs cannot be met before
other needs have been addressed.

The most famous theory about what humans require in order to reach
their "pinnacle" — the point where they decide to participate — was
posited by the humanist psychologist Abraham Maslow in the form of
a "hierarchy of needs."

Maslow defined levels of importance that reflect how and what
humans prioritize, as well as what they require in order to appreciate
their surroundings and achieve personal growth (or "self-
actualization").

Based on his concept, I’ve created one related to web development:
The hierarchy of website user needs. They’re listed below in order of
importance. 

Page of 307 650

1. Accessibility: The website can be found and used by all
people.

2. Stability: The website is consistent and trustworthy.

3. Usability: The website is user-friendly.

4. Reliability: The website is consistently available, without
downtime.

5. Functionality: The website offers content, tools and services
users value.

6. Flexibility: The website adapts to needs and wants of users.

The hierarchy of website user needs.

Fundamental expectations of visitors include being able to find the
website, to browse around it effectively, to return to it easily and to
use the available services and content.

Adapt to the needs of your users whenever possible. If the hierarchy
of website user needs fails, it will severely hinder the user experience.

Page of 308 650

Examine, then, the factors that affect experiences, and learn how to
reduce the risk that primary needs will go unserved.

Attractiveness Bias
Web design — and specifically the visual aesthetics of a web design
— is not a case of "fatal attraction," nor is it the be-all and end-all of a
website’s success (as shown by big websites that have mediocre
visual aesthetics). But beauty is attractive to humans. Psychologists
surmise that humans have a cognitive bias to attractive people and
things.

Content is, of course, the most important part of the website; it’s the
personality that lasts after the design has worn off.

The attractiveness bias theory simply states that a good-looking
design will draw more attention than a poor design. Once viewers
get over their first impression (which is always important), they’ll be
content and comfortable, and that will increase the likelihood that
they’ll visit again.

The principle behind this theory is that humans are naturally attracted
to beauty. And yet, content (the personality) is what matters — it’s the
foundation of your long-term relationship with visitors — but the
attractiveness of the design (the exterior) is what will get you noticed.

Beauty becomes less important when people learn what’s
underneath, and with websites, what should be underneath is quality
content.

Status, though, is an exception to this rule: If you’re famous, you can
make the website as ugly as you like and visitors will still flock in
droves. This is called brand recognition. Look at celebrated usability
expert Jakob Nielsen’s website, for example.

Page of 309 650

Jakob Nielsen’s website.

Some believe that design does not affect the overall impression
made by a website, but attractiveness bias theory indicates that, while
the content of a website is important to regular visitors, the "wow"
factor is responsible for creating initial appeal.

Make your website look professional and beautiful, but make sure that
it doesn’t overrule the hierarchy of website user needs. If you
accomplish this, then your website should naturally attract even those
visitors who are quick to judge quality by appearance (which
happens a lot).

Once you’ve convinced people that the website is visually solid, then
the content’s integrity will shine through.

Serial Positioning Effect
The placement of information affects how well it’s remembered. Lists,
charts and tables are useful because they break large clusters of
information into manageable, comprehensible chunks. Organized
information stands out from blocks of heavy text on a website.

In lists, the first and last pieces of information will be most easily
recalled. The beginning and end are, in our minds, naturally

Page of 310 650

significant, and therefore the text in those locations will appear to be
more important than other text on the page.

Yahoo Answers uses small content blocks to facilitate memorization.

The serial positioning effect, proposed by Hermann Ebbinghaus,
proposes that the ability of people to remember something
accurately varies with the item’s position in a list. In web design, this
most closely relates to visual hierarchy.

When people browse the web, looking through pages and pages of
information, they typically commit less than 10% to memory (and only
1% if they are looking for a key phrase or definition). Find helpful ways
to present your information, and you might make your website and its
content memorable.

Depth of Processing
Depth of processing (or levels-of-processing) is a term that refers to
the level to which information has to be processed in order to be
committed to memory.

Engage your users, and ensure that they read important details
carefully by asking them about it afterwards. Remember those exams
in school that tested whether you had retained the course material?
Tests are feared by many, but there is science — go figure — behind
the methodology.

Page of 311 650

At the end of a W3Schools tutorial, a basic quiz is offered to reinforce
knowledge.

Users do not want to be hassled with questions or have their
browsing interfered with (which is perfectly understandable) so put
simple mechanisms in place (such as an "I accept" button in a license
agreement). Find a balance between subtle awareness and
intrusiveness.

Use checkpoints and reviewing mechanisms to ensure your visitors
are learning what they need to know. For example, asking questions
at the end of an e-store checkout process and repeating important
warnings can help users process the information you are providing.

If your website provides educational information, a quiz or method of
testing knowledge could serve as an interactive memory aid. Even
asking a pointed question at the end of a blog post (such as Do you
have any tips to share about the subject?) encourages users to
critically think about what they just read.

Finding the balance between helping someone remember key pieces
of information and annoying them or getting in their way can be
tricky. Use your best judgment to decide at which points images,
interactive elements or other processing aids would be useful. From
quizzes to images to humor — so many options are at your fingertips.

Page of 312 650

Fitts’s Law
Fitts’s Law models human interaction with computers. It states that the
time and effort required to reach a target depends on the distance
and size of the target. In web design, it is most relevant when
designing the degree of usability of user interfaces.

To a great extent, websites determine how easy it is for users to
achieve their goals. Certain layout structures can become an
obstruction. A classic example of an obstruction is a clickable element
that is so small that it requires precise movements and targeting to
click (such as a small hyperlink text viewed on a mobile device).

The issue of objects with small clickable surface areas is significant
especially in mobile devices.

Fitts’s Law states that the smaller the clickable area, the longer it will
take to activate. The longer something takes to activate and get to,
the lower its usability is.

Make the surface area of interactive items on your website sufficient
in size. Take advantage of gesture movements on touchscreen
devices, and ensure that pages can be zoomed and text enlarged.
Removing barriers to access, especially for users with impaired motor
skills, is important. Anything that detracts from the experience could
cause visitors to run away.

Page of 313 650

Cognitive Load
The amount of time it takes to accomplish a task increases with the
amount of tasks given to a person. Cognitive load is a term that
describes how our learning performance is reduced when we have
many things we have to do at once.

To put it simply: the more tasks we give users, the slower they are
able to finish a task and the more confused they will become.
Usability consultant Steve Krug, in his book Don’t Make Me Think!,
illustrates this theory by using the idea of "goodwill" and gain and loss.

Keep things quick and easy to follow and your visitors will get what
they want faster. Smartly laid-out designs are among the easiest to
use and receive the most positive feedback. Using your website
should be effortless.

The Zombie Browsing Effect
We’re not talking about characters from a George Romero movie.
Zombie visitors target what they seek and don’t get distracted by
other items on display at a store or on a website.

As people get used to a website, the zombie effect becomes more
likely; as in a supermarket, once you know what goods you want and
their location, you don’t spend much time looking elsewhere. This
explains why stores sometimes change their layouts; it exposes
existing customers to new goods.

You don’t want to be a one-hit wonder; you want to encourage users
to explore your wares so that you can increase sales. Zombies avoid
exploration by ignoring their surroundings and merely following their
primal instincts. That’s what I call brainless buying habits!

Overcoming the zombie problem can be quite a challenge. You don’t
need to whack them on the head like in the movies (although that
might help); rather try getting their attention and engaging them with
distinctive design. For example, thoughtfully-placed and distinctive
elements could garner the user’s attention.

Page of 314 650

While searching a website like Amazon, our field of vision is limited to
specifics.

If everything on the page is somehow important, decide which
sections you most want to promote–streamlining content will
streamline traffic. Too many advertisements and too much content
and clutter will cause the zombies to raise their defenses and ignore
all messages; their brains will shut down completely.

Single points of interest attract attention, and if the item is relevant to
visitors, they might spend time exploring it. Allowing people to
customize your website according to how they prefer to browse (as
iGoogle and the BBC do) can discourage the zombie effect, because
people will be attracted to the relevance of the content.

Conditioning Models
In psychology, the term conditioning refers to the process of instilling
predictable behavior. Classical conditioning modifies involuntary
reactions, whereas operant conditioning modifies choices (or the
likelihood that the subject will make a certain choice). Both are
relevant.

Classical conditioning becomes relevant to web design when we
think about visitors closing pop-up windows or turning the volume
down on a website’s background music. Some reactions are natural,
but many of them are conditioned by experience. These are called
learned behaviors.

Page of 315 650

Behaviors are learned when people experience the same thing or
similar things repeatedly. In web design, conventions, trends and
patterns are responsible for learned behaviors and help users
associate events with likely outcomes. Thus, a range of possibilities
emerges — emotions can be leveraged to improve conversions, for
example.

The learned behavior to a "Page not found" error message is to click
the "Back" button.

Instead of trying to override natural behavior, streamline your website
by adapting to them. A natural or learned response requires less
cognitive power than a response to a new experience — say, when
the user faces a change in the layout. In the latter case, the learning
curve is increased significantly, primarily because training oneself to
suppress a natural response is a lengthy process and can take years —
and it might not be worth it. Trying to classically condition Internet
users is like swimming against a fierce tidal wave.

Now let’s consider operant conditioning. Operant behavior is the
behavior of an agent — that is, someone who chooses rather than
reacts. The agent learns by trial and error, and patterns of behavior are
created by learning to anticipate outcomes.

One method you can use to affect operant behavior is called priming.
Here’s simple example: if you invite website visitors to "Contact us if
you need help," a visitor will feel the need to contact you once they
have exhausted their own means of accomplishing their task. If you
hadn’t suggested it, they’d be less likely to think of it as an option.

Page of 316 650

By showing off important features, Get Glue primes visitors to use its
services.

Operant conditioning employs methods of positive and negative
reinforcement (reward and punishment). What does this have to do
with web design? Ensure that actions that benefit your website, like
visitor comments, are rewarded and that negative ones, like
spamming, are punished. Loyalty is in short supply and can fizzle
quickly if participants feel they are being treated unfairly, so be fair
and make sure that users know you’re trying.

When it comes to the underlying features on a website, conditioning
is a lot subtler and requires less explanation. Websites that have calls
to action — such as buttons that encourage users to download a
piece of software or a friendly message that asks people for
information — will prime users to perform the relevant action. If the
results are beneficial, then users are likely to repeat that behavior.

Conditioning takes time, and people will comply with fair rules if they
feel they have reason to. By using operant conditioning you can
encourage visitors to change their perception of your website and
even go along with the behavior of the majority (although some
people might defy conditioning for other reasons).

Page of 317 650

Coca-Cola uses positive reinforcement: a reward system is in place for
customers.

A person’s behavior has so many contributing factors that trying to
understand it can be a real challenge. Being aware that behavior can
be altered (with the right incentive or by addressing certain issues)
might be key to keeping your community alive.

Ultimately, you can’t force people to do your bidding, but you can
give them reasons to visit and instill in them the desire to return. The
encouragement of a community is a powerful psychological force.

Conclusion
In almost everything we undertake as web designers, psychology
plays an important role. Whether the influence is subliminal or explicit,
and whether you leverage common trends and conditions,
understanding the experience of the audience and their perception
of your web design gives you a great advantage.

Page of 318 650

Sources:

• http://www.stumbleupon.com/home/

• https://en.wikipedia.org/wiki/
Maslow%27s_hierarchy_of_needs

• https://en.wikipedia.org/wiki/
Physical_attractiveness_stereotype

• http://www3.psych.purdue.edu/~willia55/392F/Langlois.pdf

• https://en.wikipedia.org/wiki/Serial-position_effect

• https://en.wikipedia.org/wiki/Levels-of-processing_effect

• https://www.w3schools.com/quiztest/quiztest.asp?qtest=HTML

• https://en.wikipedia.org/wiki/Fitts%27s_law

• https://en.wikipedia.org/wiki/Cognitive_load

• https://us.coca-cola.com/mycokerewards/

• http://alistapart.com/article/visual-decision-making

• http://allpsych.com/psychology101/conditioning/

• http://changingminds.org/explanations/theories/
cognitive_dissonance.htm

• http://particletree.com/features/visualizing-fittss-law/

Page of 319 650

http://www.stumbleupon.com/home/
https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Physical_attractiveness_stereotype
https://en.wikipedia.org/wiki/Physical_attractiveness_stereotype
http://www3.psych.purdue.edu/~willia55/392F/Langlois.pdf
https://en.wikipedia.org/wiki/Serial-position_effect
https://en.wikipedia.org/wiki/Levels-of-processing_effect
https://www.w3schools.com/quiztest/quiztest.asp?qtest=HTML
https://en.wikipedia.org/wiki/Fitts%27s_law
https://en.wikipedia.org/wiki/Cognitive_load
https://us.coca-cola.com/mycokerewards/
http://alistapart.com/article/visual-decision-making
http://allpsych.com/psychology101/conditioning/
http://changingminds.org/explanations/theories/cognitive_dissonance.htm
http://changingminds.org/explanations/theories/cognitive_dissonance.htm
http://particletree.com/features/visualizing-fittss-law/

Evolution of Websites: A Darwinian
Tale
The web is constantly evolving. It doesn’t take a rocket scientist to see
how quickly new technologies are being adopted and how fragile
design trends are. While the web is still an infant relative to other
mediums such as print, TV and radio, and still has fair amount of
growing up to do, it has already amassed a rich history. Let’s take a
look at how the medium has evolved throughout the years.

A Matter of Carbon Dating
Evolution is inevitable. As British philosopher Herbert Spencer put it —
inspired by Charles Darwin’s theory on natural selection — it’s "survival
of the fittest.” If we examine any aspect of web design, we can see
that trends and technologies being discarded, improved on, or
superseded by something better is common. Evolve or die, pick one
of the two options. And if we delve deeper, we can see three core
elements that dictate this natural selection and evolution.

Page of 320 650

Certain web browsers tend to be more evolved than others!

Code
One of the core elements of the web is code. As web designers and
web developers, the success of a particular language largely
depends on how much value it brings to our work. I’m sure only a
handful of you remember VRML with the fondness of the concept
that we could soon be browsing the web using the same virtual
reality as used in the movie Tron. Alas, virtual reality didn’t take off.

The idea of virtual reality and 3D objects fascinated developers.

Page of 321 650

Web Browsing Devices
The second core element that dictates the web’s progress are web-
browsing devices. As technologies evolve, as browsers are improved,
as browsing methods change, so do we as an industry.

Things have come a long way from IE3 on an i486 computer with a
56k modem that made a screeching sound like a harpy as it
connected to the "Net" through AOL. We can see the fossils of our
past exist in computers that still have IE6 and Lynx, poking around our
websites on occasion (much to our dismay).

Devices come in all shapes and sizes, from cell phones to browsers.

Trends and Conventions
Finally, we have trends and conventions. No, I’m not talking about the
latest fashion according to Lady Gaga, but of design trends, design
patterns and conventions that have gained acceptance as the norm
because they are proven to work well. Things that are known to
enhance the user experience and conventions that aren’t so annoying
that you have to avert your eyes to avoid suffering a brain
hemorrhage (that’s why the neon pink against a yellow background
color scheme never quite took off).

Page of 322 650

Trends and conventions come in a whole range of shapes and sizes.

Single-Celled Organisms
When the web first started, it was much like a single-celled organism
— strong, resilient yet simple. We didn’t have the need (or ability to
have) dynamic behavior, database-driven pages and sophisticated
web layouts; the web was about sharing text (and some images) and
nothing more. Things needed to progress further to gain mass
adoption and appeal.

Back in the early days, things were much simpler. Just like
microorganisms!

If you’ve ever seen the first pages created by Tim Berners-Lee, you
would see that the original idea was simply to be able to connect and
relate disparate text pages by way of hyperlinks.

Page of 323 650

The web started with text and hyperlinks, but now it’s more
complicated.

Post the success of the early internet, thoughts of actually doing
something more visually intriguing with code (to make the text look
extra awesome) started to emerge. While the HTML standard kept
evolving to push the envelope further, web browsers began
breeding their own webs of "unique" (read as proprietary) evolutions.
And as with most children, it was inevitable that tantrums kicked off in
the face of adversity.

Vendor prefixes exist to this day, though they’re much better
organized.

Biodiversity in Design
Moving away from the lackluster ideals of just having text and images,
the HTML specification grew to include all sorts of wonderful
opportunities to begin laying out content. It started with table-based
designs and simple multi-column web pages. Then we got CSS,
which enabled us to style our content so that they looked nothing like

Page of 324 650

the typical white background, black text, and blue underlined
hyperlinks cliché. And finally, we saw an evolution towards more
complex organisms.

We went from an era of blocks of text to stuff that can be positioned
with CSS.

As the Borg said, "resistance is futile," and the fertile soil that grew the
early seeds of the web blossomed to increase our capabilities. Perl,
PHP, applets, client-side scripting allowed us to do more than just
display content, but also to give site visitors ("web surfers") a way to
interact with our pages.

While all of this growing and adoption was taking place, the browser-
makers of the time (IE and Netscape), in an attempt to out-do each
other and gain supreme dominance over the market, decided to start
making things up as they went along. They created proprietary
specifications, languages and custom code.

Page of 325 650

Internet Explorer and Netscape went at each other like Alien versus
Predator!

As people began to experiment with this thing called a "website,"
many enthusiastic developers saw themselves able to achieve some
of the most wonderfully annoying techniques to exist in our craft.
Often coded with little attention to detail, the amount of alert boxes
asking for your name, popup windows, right-click-crippling events,
JavaScript clocks, site counters, and other strange things appeared in
the boatloads. Many did it for the novelty or marketing agenda, most
never thought about the user.

Anti-right-click scripts got thrown about in a futile attempt to curb
digital piracy.

Luckily, something changed in the ethos toward the web.

Page of 326 650

With the birth of style and scripts, the adoption of standards became
important. With browsers telling you to code in different ways, things
began to conflict — and that wasn’t fun for anyone.

Some browsers like Opera have remained standards-focused since
their inception.

Part of the natural evolutionary process is based around the concept
of natural selection: The organism that is better suited for the
environment wins by outcompeting weaker organisms. The evolution
of web browsers and competition certainly represented that. In code,
multiple competing languages were produced for specific uses (i.e.,
RSS versus Atom) and this healthy competition led to the aftershock of
innovation from developers and an imaginative array of new uses for
the web from those pushing the boundaries.

Page of 327 650

Plenty of languages compete against each other, but this is healthy.

Survival of the Fittest
As we all know, the remnants of the browser wars still exist to this day
— JScript, <marquee> and hasLayout immediately come to mind, as
do some lost night’s sleep — but this simply highlights the evolution
that the web has gone under. We started with a very raw text-sharing
and hyperlinking format and within 10 years ended up with a browser
bidding war (spoiler alert: Microsoft’s IE triumphed over Netscape).

Microsoft won the browser wars by integrating IE within their OS
(Windows).

While the idea of the web’s old sites make many of us cringe and
reflect upon our own first web portfolios with questions like "Why did

Page of 328 650

I do that?" and "Where did I find that animated GIF?," the change from
what we needed the web to do to what we wanted it to do was
bridging ever closer.

Sometimes, the extinction of a proprietary element has been a good
thing!

The Wild West philosophy where "everything goes" failed toward the
early 2000s as evidenced by the "dot-com bubble" bursting.

Bonzi Buddy was a classic example of people taking the web too far.

Page of 329 650

But this scenario was almost like a purging of sorts. Out with the old,
in with the new. In its place, an age of enlightenment began, with the
catalyst simply being that more people were using the internet. This
surge of users outside of geeks meant a reform would be needed in
the way we designed and developed our websites.

From Primate to People
After surviving the horrors of the 90s web and the early failure to
monetize anything online, we breathed a huge sigh of relief that the
Y2K bug hadn’t wiped out mankind, and then we moved forward to a
more thoughtful process in designing sites.

Gone were the days where the focus was on funneling as much junk
to the user as possible. The idea of designing for the user’s
experience became interesting. User-centered design. Usability.
Accessibility. These were the words being thrown around.

People thought computers and the web would collapse under the
Y2K bug!

The old, clumsier days of the web in which design decisions were
based around which scrolling statusbar script to use or which dancing
Homer Simpson GIF would make you feel better were gone, and a
focus toward professional user-centered design, data-driven design
decisions, accessibility and usability gained importance. This was
partly due to the evolution in our collective mindset as to what made
good business sense.

Page of 330 650

Content and navigational structures became less erratic and more
organized.

Looking to the Future
Examining things from a Darwinian perspective displays the web’s
change from its various stages of life. The early days where things
were much simpler (and less stressful), the later years when many of
us cried ourselves to sleep at the thought of making a design for
Netscape and IE, the post browser war depression where design
became focused on experimentation, and now with user-centered
design — it’s been a heck of a ride!

No one knows how this evolutionary story concludes. While the web
already has an illustrious history, it’s safe to say that we’ve only just
begun.

Usage of the web has increased dramatically, as has the number of
websites.

Page of 331 650

Looking back at the Internet’s past, I find it interesting that we can
"carbon date" our sites based on the techniques and technologies
they use, and even scarier is that much of the web today remains
fossilized within the bedrock of our servers.

While the evolution of the web is going on as we speak, and it’s
fascinating to see how trends, code and devices have changed,
looking to the future of the web leaves us with limitless possibilities.

Sources:

• https://en.wikipedia.org/wiki/VRML

• https://en.wikipedia.org/wiki/Lynx_(web_browser)

• http://info.cern.ch/NextBrowser.html

• https://en.wikipedia.org/wiki/JScript

• https://msdn.microsoft.com/en-us/ie/ms530764%28v=vs.
94%29?f=255&MSPPError=-2147217396

• https://docs.microsoft.com/en-us/previous-versions/windows/
internet-explorer/ie-developer/compatibility/hh772379(v=vs.85)

• https://en.wikipedia.org/wiki/BonziBuddy

• https://www.google.com/publicdata/explore?ds=wb-
wdi&met=it_net_user_p2&idim=country:USA&dl=en&hl=en&q=i
nternet+usage#met=it_net_user_p2&idim=country:USA&tdim=t
rue

Page of 332 650

https://en.wikipedia.org/wiki/VRML
https://en.wikipedia.org/wiki/Lynx_(web_browser)
http://info.cern.ch/NextBrowser.html
https://en.wikipedia.org/wiki/JScript
https://msdn.microsoft.com/en-us/ie/ms530764%28v=vs.94%29?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/ie/ms530764%28v=vs.94%29?f=255&MSPPError=-2147217396
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/hh772379(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/hh772379(v=vs.85)
https://en.wikipedia.org/wiki/BonziBuddy
https://www.google.com/publicdata/explore?ds=wb-wdi&met=it_net_user_p2&idim=country:USA&dl=en&hl=en&q=internet+usage#met=it_net_user_p2&idim=country:USA&tdim=true
https://www.google.com/publicdata/explore?ds=wb-wdi&met=it_net_user_p2&idim=country:USA&dl=en&hl=en&q=internet+usage#met=it_net_user_p2&idim=country:USA&tdim=true
https://www.google.com/publicdata/explore?ds=wb-wdi&met=it_net_user_p2&idim=country:USA&dl=en&hl=en&q=internet+usage#met=it_net_user_p2&idim=country:USA&tdim=true
https://www.google.com/publicdata/explore?ds=wb-wdi&met=it_net_user_p2&idim=country:USA&dl=en&hl=en&q=internet+usage#met=it_net_user_p2&idim=country:USA&tdim=true

Privacy and the User Experience
The privacy issue is an often-neglected aspect of designing user
experiences. All too often in today’s information-driven society, we
who work on the web sacrifice privacy and submit our users to
violation or intrusion. In this article, we’ll discuss certain privacy-
related concerns — in particular, how asking for too much information
can degrade the overall user experience.

Our Thirst for Information
Why is privacy such a hot topic? Look at social networks such as
Facebook (whose privacy settings are notoriously complex and
ambiguous): the amount of user data that is either being made
available publicly, sold without the user’s knowledge or is visible
because of a security breach is increasing. We as site owners and site
builders are responsible for the transactions and activities that occur
on our sites. We’re the "guardians" of our users, and respecting their
privacy is important.

Many people use PayPal to ensure that any breach of their website
does not compromise their users' data.

The predominant concern about privacy is that websites often ask for
more information than they need. How many times have you been

Page of 333 650

forced to sign up for an account just to access certain information?
How many times have you been asked for personal details when the
transactions don’t require it? Websites of all scales and sizes are guilty
of this, and it’s time to address it.

Twitter doesn't make its users submit a ton of information. Excellent
work, guys!

In addition to the concerns about the amount of information being
harvested by websites, there are concerns about storage and how
websites deal with information once they get it. A user’s experience
of a business and its services will only be as pleasant as the business
is trustworthy. Treat visitors with respect and remove barriers to
access (such as multiple data requests and spam), and you’ll improve
usability — and empower your audience in the process.

The Value of Knowledge
We, as users of websites, typically "sell" our personal information to
whoever asks for it, whenever they ask. What’s your shipping
address? We’ll also grab your IP address while we’re at it (We’ll do it
secretly after you submit this web form). What’s your date of birth?
How much do you make a year?

One could argue that we, as a society, are devaluing identity.
Knowledge is power, and anyone who knows details about someone

Page of 334 650

else — details from which they could benefit or profit from — has a
leg up on the competition.

We certainly shouldn’t manipulate our users or cash in on their data
without their explicit consent and knowledge (e.g. Check this box if
you’re OK with us selling your data to anyone; we’ll make $7.99 from
selling your data). Quite the contrary: visitors will value our website if
we ensure that their information is secure. Trustworthiness is rare and,
for that reason, a valuable asset.

Tracking visitors’ habits is a debatable practice, but it can help us
enhance the experience.

While the data that we harvest from users allows us to target them
much more purposefully and give them a better user experience, we
can still reap long-term value despite restricting ourselves to minimal
data (i.e. personal details). Analytic tools, detection scripts and the
logging of IP addresses all hold great benefit to site owners, but they
must respect the privacy of users if they want to maintain that
experience.

We’re discussing value and trust here, and you’re probably wondering
how this relates to user experience (UX). The answer is simple: trust
and confidence are essential components of the experience that
users have on your website and with your brand. Trust and
confidence are critical to turning one-time visitors into long-term

Page of 335 650

customers. If your business lacks the trust and confidence of users,
then they will be reluctant to use your website.

Progressive Disclosure
If privacy problems can be so detrimental, what can we do about
them? Presumably, you want to offer visitors a hassle-free experience,
one in which they feel safe. A simple way to satisfy privacy concerns
and remove barriers to access is by following the principle of
progressive disclosure; that is, asking for and using information only
when absolutely necessary.

The basic goal of progressive disclosure is to ask for the minimum
amount of information. As users interact with the site and encounter
something that requires them to divulge more information, that’s the
only time the site should ask for it. Users should have the choice not
to provide the requested information (and thus may not use that
feature of the site).

Take for example, Amazon.com. First-time visitors can browse the
entire site without giving out any information. (A bit of an awkward
example, just because Amazon.com drops cookies to track users that
aren’t signed in — but that’s a conversation for another day.) If the
visitor finds an item she likes and would like to put it on her wish list to
bookmark for later, that’s the only time Amazon.com will ask her to
sign up for an Amazon.com account. When a new customer signs up,
all they need to provide is an email address.

Page of 336 650

The new or existing customer signup form on Amazon.com.

Finally, some months later, the user comes back to Amazon.com,
ready to buy the item she placed on her wish list — this is the point
where Amazon.com will ask for her shipping address and payment
information.

The key concept to remember in the Amazon.com example is the
progressive disclosure model for acquiring user data: A website
should not ask for all the data up front. Let users progressively
disclose their information as they use the site.

If a visitor is registering an account on your forum, don’t ask for their
phone number or home address. If they’re paying for goods online,
you don’t need to know their sex, tax bracket or marital status. Online
stores commonly make the mistake of asking for credit card details
even when the visitor is just window-shopping. People want to fill
their cart with items before checking out and entering their credit
card information.

Be sensible about when you ask for information: request it
progressively, and only when it becomes necessary.

In addition to restricting your private information requests, consider
how you present the requests you make, which could lower barriers.
People waste a lot of time fumbling through complex forms that

Page of 337 650

annoy them to no end; our job as web designers is to make such
tasks simple. If you need users to fill out a huge form, break it down
into progressive (and thus less daunting) goals to improve readability
and reduce anxiety.

Breaking Down Barriers
The key to success is removing a website’s barriers to access — all
barriers, whether related to accessibility, usability or function. Make
your website glide, not grind. Two core principles come into play
here; principles by which we can satisfy our own thirst for data while
still being responsive to our users’ needs. The principles also suggest
methods for helping visitors find what they’re looking for on our
websites.

The first principle is more choice, fewer options. While you’ll want to
avoid extremes, minimalism and reductionism are powerful in their
ability to give shape to information and to remove excess from a
visitor’s line of sight, thus improving the company-customer
relationship. Offer clear choices and remove ambiguous input fields,
and you’ll increase the likelihood of getting responses.

The second principle is education. The need to be transparent and
sensible with users has never been greater. Privacy laws exist so that
websites take steps to protect the safety of visitors and promote
awareness of how user data is handled (data protection laws serve
the same purpose in some countries). Posting clearly written and
comprehensible (i.e. not too technical) policies in a visible place on
your website can put visitors at ease, as can explaining the measures
you’ve put in place to enact those policies.

Page of 338 650

Educate users about what they’ll be "giving up," and help them avoid
nasty surprises.

It never ceases to amaze me how we web designers — who would
never trust a web host that doesn’t explain how it stores our sensitive
data (user records, registration information, etc.) — are so quick to ask
our own users to hand everything over with a mere "Trust me!"

Invisible Data-Mining
The last topic we should discuss is the issue of invisible data-mining
(which includes recording IP addresses, using cookies, storing
sessions, even using analytics software). Invisible data-mining might
seem harmless enough to us professionals, but that doesn’t allay the
concerns of users.

Page of 339 650

Spam is a serious issue; intruding on an inbox won’t win the person
over.

Invisible data-mining encroaches on ethically questionable territory. I
don’t want to preach about what one should or shouldn’t do with
respect to procuring and using data; education and awareness solve
most problems. In the end, though, more websites and designers
should allow anonymous browsing (where sensible) and make
cookies and usage-tracking optional: leave it up to the visitor.

Many people will immediately retort, "The data is harmless" or "They
can easily delete the cookies." The point is that, while such tools can
improve a website’s UX through site improvements resulting from
analysis of site activity and traffic, they shouldn’t be used against the
visitor’s wishes, and the onus shouldn’t be on users to opt out (as is
the case with spam).

Value Your Users’ Data and Privacy
My purpose was to highlight the importance of trust, which gets
compromised when user privacy is handled poorly. Know your
visitors’ expectations of privacy, as well as the most current methods
of handling data and the lawful ways in which data can be collected
and used. You might help to dispel some of the anxiety and
contention that currently afflicts users and governments. The future of
the web almost certainly depends on our methods of dealing with
privacy, so taking the issue seriously right now is crucial.

"User experience" is a funny term, and it can be looked at in a number
of ways. The lesson to remember, though, is "Value your users." If an

Page of 340 650

element doesn’t enrich the experience or encourage users to
continue, your efforts will have been wasted. If your website breeds
distrust, then you will certainly lose customers and possibly erode the
public’s regard of the web as a safe place to store data. As web
professionals, we must value our users, recognize their worth and
treat them with respect.

Sources:

• https://www.eff.org/deeplinks/2010/04/facebook-timeline

• https://www.paypal.com/

• https://analytics.google.com/

Page of 341 650

https://www.eff.org/deeplinks/2010/04/facebook-timeline
https://www.paypal.com/
https://analytics.google.com/

100 Exceedingly Useful CSS Tips and
Tricks
You can never have too much of a good thing–and two good things
we rely on in our work are tips and tricks. Nuggets of information,
presented clearly and succinctly, help us build solutions and learn
best practices. In a previous article, we shared a jam-packed list of
250 quick web design tips. It seems only right to continue the trend
by showcasing 100 fresh–and hopefully useful–CSS tips and tricks.

General
Not everything in this list was easy to categorize. All of the tips that
are relevant and worthy of mention but don’t cleanly fit into a
category are listed in this section.

Conditional comments have been a godsend for resolving Internet
Explorer inconsistencies.

1 It’s critical when working with CSS to be aware of the various
properties at your disposal and how to use them correctly.

2 Using a good editor can increase productivity. Syntax
highlighting and auto-complete functionality (plus validation and
code references) make life easy. Check out Notepad++, Coda, and
don’t discount Dreamweaver CS’s code view until you try it.

Page of 342 650

3 In many ways, experimentation is the mother of innovation. Give
yourself time to play; trial and error will help you learn and
memorize techniques quickly.

4 Enable Gzip compression server-side whenever possible; it
shrinks the size of files such as CSS and JavaScript without
removing any of the content.

5 Caching will conserve bandwidth for visitors and account for
much faster speeds. Take advantage of it whenever you can. Learn
about optimizing browser caching.

6 Whitespace is important for CSS readability. Using whitespace to
format your stylesheet adds bytes to the file size, but it’s made up
for in increased readability.

7 Avoid using inline code (in either elements using the style
attribute or in the HTML document within <style> tags), and put
them instead in your external stylesheets. It’ll be easier to maintain
and also takes advantage of browser caching.

8 Whatever method you use to lay code out, be consistent. You’ll
avoid potential problems such as misinterpretation.

9 Conditional comments can help you target versions of Internet
Explorer for style. Filtering vendor-specific code isn’t ideal, and
comments are safer than ugly hacks.

10 This tip is slightly controversial, but I recommend using a single
stylesheet rather than multiple ones. It reduces the number of
HTTP requests and improves maintainability, giving your site a
performance gain. This is a tip supported by Google Page Speed
guidelines.

11 When there are conflicting style rules, style rules that are later
down the stylesheet supersedes the ones that come before it.
Thus, put mission-critical declarations at the end, where they won’t
be in danger of being overridden by other styles.

12 If you encounter a bug and can’t determine its cause, disable
CSS (using something like Firebug or the Web Developer add-on)

Page of 343 650

or simply comment out all of the styles, and then bring selectors
back one by one until the fault is replicated (and thus identified).

13 Make sure your code works in various browsers. Check it
against the latest versions of the top five: Internet Explorer, Firefox,
Chrome, Safari and Opera.

14 Additionally, ensure that your code will degrade gracefully
when CSS is disabled in the user’s browser. To test this, either turn
styles off in every browser or use a text browser such as Lynx.

15 Ensuring that your code degrades gracefully is obviously
important, but many people forget that some visitors will have a
dodgy browser or have styles turned off, so check that your
fallbacks work.

16 Every browser has a built-in debugger. In IE and Firefox you can
get to the inspector by hitting F12; for Chrome, Safari and Opera,
press Ctrl + Shift + I.

17 Browser emulators can’t replace the real thing, so use a real or
virtualized edition of a browser or device.

18 Did you know that PHP code can create dynamic CSS files?
Here’s a tutorial on that. Just give the file a .php extension and
ensure that the file declares the document header with a text/css
content type.

19 Naming CSS files can be tricky. One of the best ways to
approach the task is to keep file names short and descriptive, like
screen.css, styles.css or print.css.

20 Any code or process you create is valuable, and recycling what
you’ve produced for other projects is not a bad thing: pre-existing
code is a great timesaver, and this is how JavaScript and CSS
frameworks are born.

21 While comments in CSS files can assist other people who read
or maintain them, avoid writing comments unless they are
required. Comments consume bandwidth. Write CSS in a self-
explanatory manner by organizing them intuitively and using good
naming conventions.

Page of 344 650

22 If you’re struggling to remember what’s available in CSS (or
even CSS3), get some cheat sheets. They’re simple and can help
you get used to the syntax. Here are some excellent CSS cheat
sheets: CSS Cheat Sheet (Added Bytes), CSS Shorthand Cheat
Sheet (Michael Leigeber), CSS 2.1 and CSS 3 Help Cheat Sheets
(PDF) (Smashing Magazine).

23 Bad code breaks more websites than anything else. Validate
your code by using the free, web-based W3C CSS Validation
Service to reduce potential faults.

24 Vendor-specific CSS won’t validate under the current W3C
specifications (CSS2.1), but could give your design some useful
enhancements. Plus, if you’d like to use some CSS3 for progressive
enhancement, there’s no way around using them in some
instances. For example, the -webkit-transform and -moz-transform
property was used to progressively enhance these CSS3-animated
cards for users using Safari, Chrome, and Mozilla Firefox.

25 Keep multiple CSS files in a single directory, with an intuitive
name such as css/. If your website has hundreds of pages,
maintainability and information architecture are vital.

At-rules, Selectors, Pseudo-classes, and Pseudo-
elements
Targeting your code for styling is one of the primary functions of CSS.
Whether you’re trying to make your code mobile-friendly, printer-
friendly or just good old screen-friendly, you’ll be following certain
conventions. Ensuring that styles aren’t in conflict, using CSS
inheritance correctly and triggering actions in response to events
(such as hovering) are all part of the CSS package. This section is
dedicated to useful tips related to conventions.

Page of 345 650

With CSS3 media queries, designing for non-standard experiences
has become easier.

26 Be careful when using the media attribute in your HTML
declaration for an external CSS file. You might be unable to use
media queries to better provide pre-cached alternative visuals.

27 If you find elements that use the same properties and values,
group them together by using a comma (,) to separate each
selector. This will save you from repetition.

For example, if you have the following:

h1 { color:#000; }
h2 { color:#000; }

Combine them as such:

h1, h2 { color:#000; }

28 Printer-friendly stylesheets are very important if you want to
save your visitors’ ink and paper. Use the @media print at-rule, and
remove anything that isn’t necessary on the printed page.

29 Accessibility also has to do with how the written word is
spoken. The aural (now deprecated in CSS) and speech media
queries can improve usability for screen readers.

Page of 346 650

30 Unfortunately, the handheld media query in CSS isn’t widely
supported. If you want your website to work on mobile devices,
don’t depend on it to serve the correct visuals to mobile devices.

31 Take the time to eliminate duplicate references and conflicts in
your CSS. It will take some time, but you’ll get a more streamlined
render and fewer bytes in your files.

32 When working with mouse hover events, deal with the (1) :link
pseudo-class, then (2) :visited, then (3) :hover and finally (4) :active
— in that order. This is necessary because of the cascade.

33 Making a website work well on Apple iOS devices is
straightforward: to scale your design, just use CSS3 media queries
with the appropriate min-width and max-width values. Here’s a
tutorial for that.

34 Make the most of CSS inheritance by applying required styles
to parent elements before applying them to the children. You
could hit several birds with one stone.

35 You can apply multiple classes to an element with space
separation, which is great if you want to share properties with
numerous elements without overwriting other styles.

36 If you don’t want to deal with IE6’s conditional comment
quirks–they require a separate CSS file–then you can use the star
hack (* html) selector, which is clean and validates.

37 HTML tooltips are fine for plain text, but the :hover pseudo-class
for CSS tooltips gives you more options for showing styled
content. Check out this tutorial on how to create CSS-only tooltips.

38 Using attribute selectors, you can add icons or unique styles
depending on the file type you link to in an anchor. Here’s an
example with which you can add style to a PDF link: a[href$='.pdf].

39 You can also use attribute selectors to target a specific pseudo-
protocol such as mailto or skype: [href^="skype:"].

40 Rendering CSS takes time, and listing selectors adds bytes.
Reduce the workload of a renderer by using only the selectors you
require (an id is better than many child references).

Page of 347 650

41 Not everyone will agree with this, but I recommend writing
every "custom" selector down as a class (before making it an id) to
help eliminate duplicate entries.

42 When structuring your CSS file by selectors, the convention is to
list elements, then classes (for common components) and finally
any ids (for specific, unique styles).

43 Naming conventions for selectors are important. Never use
names that describe physical attributes (such as redLink), because
changing the value later could render the name inappropriate.

44 Case sensitivity relates to naming conventions. Some people
use dashes (e.g. content-wrapper) or underscores (i.e.
content_wrapper), but I highly recommend using camel case (e.g.
contentWrapper) for simplicity.

45 The universal selector (*) is used widely in CSS reset
mechanisms to apply specific properties to everything. Avoid it if
you can; it increases the rendering load.

46 With CSS3 media queries, you can easily target the orientation
of a viewport with portrait or landscape mode. This way, handheld
devices make the most of their display area.

47 Apple’s devices are unique in that they support a <meta
name="viewport"> tag, which has stylistic value attached to it. You
can use this to force the screen to zoom at a fixed rate of 100%.

48 The two CSS3 pseudo-elements, :target and :checked have
great potential. They apply their designated style only to certain
events and can be useful as hover event alternatives.

49 Embedding content in CSS is a unique way to give anchor links
some description in printer-friendly stylesheets. Try them with
the ::before or ::after pseudo-elements.

50 IDs can serve a dual purpose in CSS. They can be used to apply
styling to a single element and to act as an anchoring fragment
identifier to a particular point on the page.

Page of 348 650

Layout and the Box Model
When we’re not selecting elements for styling, we spend a lot of time
figuring out how things should appear on the page. CSS resets and
frameworks help us with consistency, but we should know how to
correctly apply styles such as positioning and spacing. This cluster of
useful tips relates to the aspects of CSS that fundamentally affect how
the components of a website appear and are positioned.

Positioning plays a critical role in the readability of information and
should not be ignored.

51 Many designs are focused on grids and the rectangular regions
of the viewport. Instead, create the illusion of breaking out of the
box for added effect.

52 If margin: auto; on the left and right sides isn’t getting you the
central point you desire, try using left: 50%; position: absolute; and
a negative margin half the width of the item.

53 Remember that the width of an item constitutes the specified
width as well as the border width and any padding and margins.
It’s basically a counting game!

54 Another controversial tip here: don’t use CSS resets. They are
generally not needed if you take the time to code well.

Page of 349 650

55 A CSS framework such as Blueprint or YUI Grids CSS might assist
you speed up development time. It’s a bit of extra code for the
user to download, but it can save you time.

56 Remember that Internet Explorer 6 does not support fixed
positioning. If you want a menu (or something else) to be sticky,
it’ll require some hacks or hasLayout trickery.

57 Whitespace in web designs is amazing; don’t forget it. Use
margins and padding to give your layout and its content some
breathing room. You’ll create a better user experience.

58 If one thing overcomplicates the task of scaling a design the
way you want, it’s using inconsistent measurements. Standardize
the way you style.

59 Different browsers have different implementations; visually
impaired users may want to zoom in, for example. Give your
layout a quick zoom-test in web browsers to ensure the style
doesn’t break!

60 Most browsers can use box-shadow without extra HTML. IE can
do the same with filter:
progid:DXImageTransform.Microsoft.Shadow(color='#CCCCCC',
Direction=135, Strength=5);

61 Rounded corners aren’t as difficult to make as they used to be.
CSS3 lets you use the border-radius property to declare the
curvature of each corner without surplus mark-up and the use of
images.

62 One disadvantage of liquid layouts is that viewing on a large
screen makes content spill across the viewport. Retain your
desired layout and its limits by using min-width and max-width.

63 WebKit animations and transitions might work only in Safari and
Chrome, but they do add a few extra unique, graceful flourishes
worthy of inclusion in interactive content.

64 If you want to layer certain elements over one another, use the
z-index property; the index you assign will pull an element to the
front or push it behind an item with a higher value.

Page of 350 650

65 Viewport sizes aren’t a matter of resolution. Your visitors may
have any number of toolbars, sidebars or window sizes (e.g. they
don’t use their browsers maximized) that alter the amount of
available space.

66 Removing clutter from an interface using display:none might
seem like a good idea, but screen-reader users won’t be able to
read the content at all.

67 Be careful with the overflow CSS property when catering to
touch-screen mobile devices. The iPhone, for example, requires
two fingers (not one) to scroll an overflowed region, which can be
tricky.

68 Have you ever come across CSS expressions? They were
Microsoft’s proprietary method of inserting DOM scripts into CSS.
Don’t bother with them now; they’re totally deprecated.

69 While the CSS cursor property can be useful in certain
circumstances, don’t manipulate it in such a way as to make finding
the cursor on the screen more difficult.

70 Horizontal scrolling might seem like a unique way to position
and style content, but most people aren’t used to it. Decide
carefully when such conventions should be used.

71 Until Internet Explorer 9 is final, CSS3 will have some critical
compatibility issues. Don’t rely too heavily on it for stable layouts.
Use progressive enhancement concepts.

72 CSS makes it possible to provide information on demand. If you
can give people information in small chunks, they’ll be more likely
to read it.

73 When showcasing a menu in CSS, be consistent in
implementation. People want to know about the relationship
between objects, and it’s important to avoid dissonance.

74 CSS isn’t a solution to all of your layout woes–it’s a tool to aid
your visual journey. Whatever you produce should be usable and
logically designed for users (not search engines).

Page of 351 650

75 Once your layout is marked up with CSS, get feedback on how
usable it really is; ask friends, family, co-workers, visitors or
strangers for their opinions.

Typography and Color
If one thing deserves its own set of tips, it’s the complex matter of
adding typography, color and imagery to CSS. We want readable
content and we want it in a consistent layout. In this section, we’ll
learn to take advantage of typography and color, which are powerful
conventions in design. I’ll talk about "web-safe" and share tips relating
to the latest craze of embedding fonts.

"Web-safe" concepts have changed over time and could soon
become a non-issue.

76 Squeezing content too close together can decrease overall
readability. Use the line-height property to space lines of text
appropriately.

77 Be cautious about letter-spacing: too much space and words
will become illegible, too little and the letters will overlap.

78 Unless you have good reason, don’t uppercase (i.e. text-
transform:uppercase;) long passages of text (e.g. HEY GUYS AND
GALS WHAT’S UP?). People hate reading what comes off as
shouting.

79 Accessible websites have good contrasting colors. Tools exist
to measure foreground colors against background colors and give

Page of 352 650

you a contrast ratio. Check out this list of tools for checking your
design’s colors. Be sure your text is legible.

80 Remember that default styles might differ greatly from browser
to browser. If you want stylistic flourish, reinforce the behavior in
the stylesheet.

81 In the old days, the number of colors that a screen could display
was rather limited. Some people still use old monitors, but the
need for web-safe colors has drastically reduced.

82 Building a font stack is essential when making a design degrade
gracefully. Make sure that fallback typefaces exist in case the one
you request isn’t available.

83 With Vista, Windows 7 and MS Office 07â€“10 (and their free
viewers), a number of cool new web-safe fonts have become
available, such as Candara, Calibri and Constantina. Read about
Windows fonts.

84 Plenty of smartphone apps can boost your ability to build a
stylesheet, but Typefaces for the iPhone and other iOS4 devices is
particularly useful because it shows you every font installed.

85 Web-safe fonts are no guarantee; people could quite possibly
uninstall a font even as ubiquitous as Arial (or Comic Sans!). Then
their browsers wouldn’t be able to render it.

86 Avoid underlining content with the text-decoration property
unless it’s a real link. People associate underlined text with
hyperlinks, and an underlined word could give the impression that
a link is broken.

87 Avoid the temptation to use symbolic typefaces like Wingdings
or Webdings in the layout. It might save KBs on imagery, but it’ll
serve nonsensical letters to screen-reader users.

88 Remember that @font-face has different file format
requirements depending on which browser the user is on, such as
EOT, WOFF, TTF and OTF (as you would find on a PC). Serve the
appropriate format to each browser.

Page of 353 650

89 The outline property is seriously underused as an aid to web
accessibility. Rather than leaving it set to the default value, use
border styles to enhance an active event’s visibility.

90 Smartphones do not have the same level of core support for
web typography that desktop browsers do, which means fewer
web-safe fonts and no conventional @font-face embedding.

91 Cross-browser opacity that degrades gracefully can be applied
using the -ms-, -moz-, -khtml- vendor prefixes and the filter:
alpha(opacity=75); property for Internet Explorer.

92 You can make background-image bullets by using list-style-
type:none;, adding a padding-left indent and positioning the
background-image to the left (with the required pixel offset).

93 Helping users identify an input box is easy; just add a
background image of the name (like "Search" or "Password") and
set it so that the image disappears when the box is clicked on by
using the :focus pseudo-class and then setting the background
property to none.

94 Large and visible click regions enhance the usefulness and
usability of anchor links, which in turn guide people among pages.
Be attentive when you style these.

95 Remember that background images do not replace textual
content. If a negative indent is applied, for example, and images
are disabled, then the title will be invisible.

96 Navigation items need to be labeled appropriately. If you use a
call-to-action button or an image-based toolbar, make sure a
textual description is available for screen readers.

97 If the idea of applying opacity with a bunch of proprietary
elements doesn’t appeal to you, try RGBA transparency (in CSS3)
instead of background-color: rgba(0,0,0,0.5);.

98 If your visitors use IE6, avoid using px as the unit of
measurement for text. IE6 users have no zoom functionality; they
rely on text resizing, which doesn’t work with px. Use a relative unit
instead, such as em.

Page of 354 650

99 Providing alternative stylesheets for supported browsers such
as Firefox and Opera can enhance readability, as in the case of
high-contrast alternatives.

100 If you find choosing colors difficult, web-based tools like
Adobe Kuler, desktop tools like ColorSchemer Studio and mobile
apps like Palettes Pro might help.

Style Can Be Stylish!
CSS has come a long way in recent years. With browser makers
implementing the CSS3 specification even before it’s finalized, adding
unique proprietary styles (such as WebKit transformations) to the mix
and increasingly supporting web standards, there has never been a
better time to be a web designer. In the past, we could only hope
that our styles would be correctly applied, but it seems that desktop
and mobile platforms are improving like never before.

Web designs have come a long way since the ’90s, and that’s a good
thing.

Implementing CSS can be frustrating, what with ongoing web-
browser issues, but it’s still one of the most fun web languages you
can engage with. Rather than laying out the structure of objects or
fiddling with complex mechanisms, you can dictate how content
should appear. It’s like being given a blank piece of paper and a pack

Page of 355 650

of crayons. And designers are experimenting with the available styles
to create beautiful experiences for audiences.

Consider the implications of every property and style you declare.
CSS can turn the simplest or most minimalist layout into a complex
structure of interactivity that would terrify all but the most dedicated
individuals. As the capabilities and options in CSS grow and devices
are updated to support them, a new wave of unique layouts will
appear. Hopefully a number of them will be yours.

Sources:

• https://notepad-plus-plus.org/

• https://panic.com/coda/

• https://helpx.adobe.com/dreamweaver/tutorials.html

• https://en.wikipedia.org/wiki/Gzip

• https://en.wikipedia.org/wiki/Web_cache

• https://developers.google.com/speed/docs/insights/
LeverageBrowserCaching?csw=1

• https://www.quirksmode.org/css/condcom.html

• https://developers.google.com/speed/docs/insights/mobile?
csw=1

• https://getfirebug.com/

• https://www.cheatography.com/

• https://www.smashingmagazine.com/2010/05/css-2-1-and-
css-3-help-cheat-sheets-pdf/

• http://jigsaw.w3.org/css-validator/

• https://jonikorpi.com/

• https://www.w3.org/TR/CSS2/media.html#at-media-rule

• https://www.w3.org/TR/css3-mediaqueries/

• https://www.smashingmagazine.com/2010/07/how-to-use-css3-
media-queries-to-create-a-mobile-version-of-your-website/

• https://en.wikipedia.org/wiki/Camel_case

Page of 356 650

https://notepad-plus-plus.org/
https://panic.com/coda/
https://helpx.adobe.com/dreamweaver/tutorials.html
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Web_cache
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching?csw=1
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching?csw=1
https://www.quirksmode.org/css/condcom.html
https://developers.google.com/speed/docs/insights/mobile?csw=1
https://developers.google.com/speed/docs/insights/mobile?csw=1
https://getfirebug.com/
https://www.cheatography.com/
https://www.smashingmagazine.com/2010/05/css-2-1-and-css-3-help-cheat-sheets-pdf/
https://www.smashingmagazine.com/2010/05/css-2-1-and-css-3-help-cheat-sheets-pdf/
http://jigsaw.w3.org/css-validator/
https://jonikorpi.com/
https://www.w3.org/TR/CSS2/media.html#at-media-rule
https://www.w3.org/TR/css3-mediaqueries/
https://www.smashingmagazine.com/2010/07/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
https://www.smashingmagazine.com/2010/07/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
https://en.wikipedia.org/wiki/Camel_case

• https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/
Viewport_meta_tag

• https://www.w3.org/TR/selectors-3/

• https://www.w3.org/DesignIssues/Fragment.html

• https://24ways.org/

• http://www.blueprintcss.org/

• https://yuilibrary.com/

• http://webfx.eae.net/dhtml/cssexpr/cssexpr.html

• https://fonts.google.com/

• https://daringfireball.net/2007/07/iphone_fonts

• https://en.wikipedia.org/wiki/Web_Open_Font_Format

• https://color.adobe.com/

• http://www.maddysoft.com/iphone/palettes/

Page of 357 650

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag
https://www.w3.org/TR/selectors-3/
https://www.w3.org/DesignIssues/Fragment.html
https://24ways.org/
http://www.blueprintcss.org/
https://yuilibrary.com/
http://webfx.eae.net/dhtml/cssexpr/cssexpr.html
https://fonts.google.com/
https://daringfireball.net/2007/07/iphone_fonts
https://en.wikipedia.org/wiki/Web_Open_Font_Format
https://color.adobe.com/
http://www.maddysoft.com/iphone/palettes/

The A-Z List for Web Designers
There are so many technical aspects of web design and development
that it can be pretty hard work getting to grips with all the intricacies
that have become a part of our ever-growing industry. This A-Z list
attempts to assigns each letter of the alphabet to an important aspect
of our work as professionals that make websites.

In this list, you may come across terms you’re already aware of, or
things you might not have ever heard of, but in any case, I
recommend that everyone should have at least a basic working
knowledge of these particular items. Some things are more orientated
toward design, others are aimed toward front-end development, but
all of them provide their own unique benefits to the web pages you
build.

A is for Accessibility
Accessibility is one of the most critical aspects of our job, as many
individuals browse the web with impairments that require non-
traditional means of website access, such as screen readers and input-
assistive devices. Accessibility, though, is also about universal design;
designs that can be used through various situations such as mobile
devices or older browsers. While there is no clear definition as to how
far accessibility extends, a range of best practices to help certain
conditions (such as visual, aural, and motor impairments) have been
produced. If you’re not already aware of such issues, it’s well worth
investigating further.

Page of 358 650

The Web Content Accessibility Guidelines are a great place to begin
looking at the subject of accessibility.

Laws in many countries influence the need for web-accessible
websites as a result of governments seeking to give its citizens equal
access to information technology. Most web designers can
implement accessibility standards at a basic level just by following
web standards and best practices, and these implementations often
improve the quality of the site produced, even for able-bodied site
visitors. Web accessibility is quite an intricate subject, and will require
time and experience to learn fully, but knowing that your products
provide universal access makes it worth the extra effort.

B is for Browsers
Every internet-enabled device has software that makes those lovely
pages of yours viewable by users. The browser is that software, and it
is among the most vital elements of the web experience. Most
browsers these days render sites uniformly, but old browsers like IE6
may give you issues.

Page of 359 650

If you see a person using Internet Explorer 6, you may as well
abandon all hope!

While hundreds of browsers exist, there are at least five major
browsers that you should be concerned about: Internet Explorer,
Mozilla Firefox, Google Chrome, Apple Safari and Opera. A web
designer having all of these browsers installed on their work machine
for testing purposes is not a bad idea. In addition, testing on mobile
devices (using their native browsers) is also recommended.

C is for CSS
CSS is the primary method of styling HTML elements. It’s what makes
a boring page look visually stunning.

The Acid tests show CSS-standards-compliance of a browser.

Cross-browser compatibility is an issue with CSS — so it’s important
that you validate your code, know all of the selectors, properties and

Page of 360 650

values you can work with, and consider the browsers’ needs. If you’re
thinking of expanding your knowledge of CSS for future-standards-
compliant browsers like Chrome, Safari and Firefox, now is a good
time to learn about how you can progressively enhance your web
designs with CSS3.

D is for Debugging
Sometimes your code doesn’t work in the way that you intended. The
need for debugging has only increased with the range of web
languages we now use, the more complex styles of designs we
produce, and the chaotic amount of browsers — that now includes
the Mobile Web — we need to support. Ensuring that your code
works (and works well) has become a skill that all designers should
possess.

Firebug is an awesome browser extension for debugging front-end
source code.

Being able to surgically resolve rendering issues requires a deep and
insightful knowledge of the languages you work with, patience,
experience, and critical thinking skills.

E is for Ethnography
Let’s face it, your site’s most important component are the visitors
who spend their time browsing your pages. The subjects of
Ethnography and, to a greater extent, sociology, are based around the
need to understand your audience. It involves collecting meaningful
data through studies and research in order to determine the optimal
design for a site.

Page of 361 650

Statistics, such as those from W3Counter, help you understand an
audience.

While you may think people are all relatively the same, the cultural
differences within us have effects in the way our designs are
perceived. It’s worth learning about sociology, even in just a
fundamental level.

F is for Flash
Love it or hate it, Adobe’s Flash is a widely implemented web
technology that has been around for years. While HTML5 won’t kill its
purpose as a tool for rapidly building rich, responsive and interactive
content (e.g. web-based games and animation sequences) anytime
soon (if at all), its worth knowing how the technology works if you are
considering the use of highly interactive web media in your web
designs.

Page of 362 650

While Flash is well supported, it can be easily disabled or uninstalled.

It’s important to ensure that your site works if Flash is not supported
by the user’s browser. Many people choose to have Flash disabled,
and Apple just recently undid its ban of the technology in its devices.
Flash is an excellent web technology when developing with design
best practices in mind.

G is for Graphics
Websites without images and graphics would be boring, and
knowing how to create useful and captivating images is an imperative
skill to have as a web designer.

Images are a huge part of the web.

Since the early days of the web, the ability to embed images in an
HTML document has enhanced the level of visual aesthetic that can

Page of 363 650

be applied to a page layout. Graphics are often used for things that
can best be presented in visual form rather than text form. For
example, charts and graphs can enhance the reader’s ability to
understand data being presented to them.

H is for HTML
If you build websites, you need to know HTML. It’s pretty much as
simple as that! The structural language has been around since the
web came into being. HTML is meant for marking up your content in
such a way that it emphasizes the semantic meaning of it.

Validating your code using services such as W3C’s Markup Validation
Service is a good idea.

While cross-browser compatibility isn’t so much of an issue with HTML
(unless you’re branching out into HTML5 or using the proper MIME-
type for XHTML), it’s still important to validate your code and use the
right HTML elements for the right job. HTML is often the starting point
for web designers and developers alike and is the most fundamental
component of our websites.

Page of 364 650

I is for Interaction Design
Back in the early days of the internet, web pages were static. We have
evolved past that boring era, and now we have pages filled with stuff
that moves, responds to user actions, and provides rich components
for our visitors that improve their experience (e.g. web forms and real-
time information widgets). Interaction design focuses on the
philosophy that websites should be utilitarian.

Getting visitors to interact with your site requires an engaging and
useful experience.

Whether you use polls, have contact forms, or host a forum —
knowing solid interaction design principles is a worthwhile pursuit.

J is for JavaScript
JavaScript tends to scare beginning web designers off due to it being
more complex than the simple markup language they’re likely more
familiar with (HTML). However, JavaScript does play an instrumental
part in making modern websites, and especially web applications.
JavaScript enhances the user experience through asynchronous, real-
time updating of web pages when an event is triggered (such as a
click) through a technique collectively known as Ajax. JavaScript also
provides slick interactivity and smooth effects that, by design, is
aimed to improve interaction tasks.

Page of 365 650

JS frameworks like jQuery aid agile development.

JavaScript does have its limits (and for a good reason, as it could be
used to exploit vulnerabilities in a user’s computer) and it may not
always be available on a user’s browser because it can be disabled.
Just like Flash, the best practice for JavaScript is that a web page
should be usable and accessible without JavaScript.

K is for Keywords
OK, so this one is stretching our web design A-Z list a bit. However,
keywords do play their part in search engine optimization and
marketing, which relates to web design. Marketing has an
unbelievable level of influence on the success of the website projects
you build.

Page of 366 650

Marketing your website can be done on-page, off-page and even
totally offline.

While marketing may appear like child’s play, there’s a lot more to it
than meets the eye. Advertising, SEO, conferences, meet-ups,
sponsorship, social networking, viral promotions, PPC, optimizing your
site’s markup, distributing freebies that provide a link back to your site,
and many other methods exist. Knowing about keywords, and about
SEO and marketing, gives you a leg up. These things, though, are
intrinsically going to be a part of the sites you build if you follow web
design and web development best practices.

L is for Limitations
Though web technologies quickly evolve in a relatively short period
of time, web designers will always have limitations in the things they
can do on a web page. Limiting factors can also be non-technology-
related, such as a person’s skill and a project’s budget.

While the web is evolving, it’s still relatively young and can’t do
everything we’d like it to (even when we push the boundaries quite
often).

Page of 367 650

It’s important to make sure everything degrades gracefully, with no
exceptions.

Dealing with limitations, of how to overcome constraints, is an
essential part of being a web designer. Education, experimentation,
and experience play a vital role to the advancement of your career.
Even the most established professionals require an open mind and
the seed of doubt in what they already know so that they can keep
pushing forward and stay ahead of the curve.

M is for Metadata
One of the most underestimated elements of web design (which few
people give much thought to) is the notion of metadata. Essentially,
the concept behind the subject is to provide materials that describe
the information’s content (data about data). Within the constructs of
the web, some of the most well known uses for metadata are Meta
tags, RDF data and purpose-built microformats.

Page of 368 650

There is more to life than HTML, you can play with microformats too.

By including metadata in your documents, you can not only describe
your pages in such a way that they can be better indexed by web
spiders (like how libraries have indexes to find the book you’re
looking for) but you can also markup the information on a page in a
way that gives them added meaning and utility. An example of this is
how a vCard can be coded for browsers, apps (such as an email
client) and services that are set to recognize the convention.

N is for Navigation
Another essential component of web design is the concept of
navigation and information architecture. A website may contain
hundreds, if not thousands, of pages and this presents a challenge of
how to ensure that people can find what they are looking for.
Knowing how to organize and structure information is a critical skill to
learn.

Page of 369 650

Information architecture is useful in aiding the ability of users to find
what they want.

Evaluating the value of (and using) things like breadcrumbs, search
features, and content categorization is a significant part of the web
design process.

O is for Objectivity
Often, web designers make the mistake of creating experiences that
reflect their preferences rather than the users’. Who can blame us? It’s
hard to be empathic toward your audience if you’re not one of them.
Remaining objective and dealing with the jobs you undertake
professionally is a skill that doesn’t come with a manual, but
nonetheless needs to be learnt.

Page of 370 650

Your design isn’t based on what you think is pretty (or else things
could get ugly)!

Before you begin producing a website, you need to know what
you’re producing, why you’re producing it, and who’s going to use it.
Research, designing by numbers, knowing general usability
guidelines and understanding how to collaborate effectively are but a
few things that are involved in creating web designs objectively. Not
letting your own biases take control of a project will allow you to
make logical considerations that empathize with the greater needs of
your clients and users.

P is for Psychology
Of all the areas related to user experience design, psychology is
probably amongst the most interesting and useful. Everything a
person does on the web relates to the way they behave and think.
Knowing how to engage with that behavior will allow you to
maximize the success of your web designs.

Page of 371 650

Human behavior can help you identify emotional attachment to color.

If you haven’t really thought much about psychology and you’re
designing sites for a living, it’s really worth learning about psychology,
at least at a basic level and in ways that relate to Design. For example,
you could learn about how Gestalt psychology can be applied to
Web Design. Most aspects of design and what we define as beauty is
depicted through psychology, as are the ways we can "train" visitors
to become accustomed to a particular interface.

Q is for Quality
An important part of any business is the concept of quality control.
Being a successful designer means that you need to be passionate
and caring of your craft. In such a highly competitive market, the need
to maintain a set of standards, do what’s in the users’ best interests
and ensure what you produce meets requirements is vital. Whether
you are a designer or coder, the ability to not just follow
specifications, but also to set your own ideals, is worthy of attention.

Page of 372 650

Why would anyone release substandard work? Make sure you set
high standards for your projects.

Whenever I produce a web design, I have a whole compendium of
checklists and requirements that it needs to meet before the project is
given the final "all clear." It takes a bit of time to develop some decent
standards for your own work — and it has to be a personal initiative.
However, once you have, you can continue to evolve and refine your
processes, not only saving time, but also ensuring that you build a
solid reputation for yourself as someone who cares about their work’s
quality.

Page of 373 650

R is for Readability
If there’s one thing that is repeated to you Buzz-Lightyear-style (i.e. "To
infinity and beyond!"), it’s the notion that "Content is King." Without
content, your website is worthless. And content isn’t just text and
articles such as the one you’re reading now. It’s a web app’s
marketing copy, it’s a call-to-action button’s choice of words, it’s the
perfectly placed video demo, or that awesome infographic that takes
advantage of visual learning. As such, ensuring that you make your
content as interesting, readable and as user-friendly as possible is a
sure way to encourage regular visits.

Content is king and ensuring it’s easy to understand and visible is part
of your job.

Part of readability is the subject of information design, laying out your
content in a manner that will appeal to your visitors. Being able to
design and code a website are important, but so is usable content.

S is for Server-Side
JavaScript’s a great client-side language, but server-side scripting is
also essential to modern websites. It does everything else that client-
side scripting can’t (or shouldn’t) do. Saving user input, retrieving and
processing database data, and page templating are but a few
fundamental examples of how much server-side scripting is a part of
our products.

Page of 374 650

There are plenty of languages and server-side frameworks, such as
Rails, to choose from.

Obviously most people will be aware of server-side scripting in some
form, but for beginners to the whole backend business-logic arena,
it’s valuable knowing even just the basics of what server-side scripting
can do in order to know the possibilities and limitations.

T is for Typography
With @font-face gaining more widespread support, and standards for
web fonts such as WOFF being drawn up, the past restraints on web
typography are slowly fading away. But as Peter Parker’s uncle
warned, "with great power comes great responsibility." With the
increasing number of ways we can design type on a web page, the
need to understand typography has become a much more significant
part of a web designer’s job.

Page of 375 650

People use many fonts on the web, but no one should be using
Comic Sans!

If you don’t already have a working knowledge of fonts and
typography, now is the time to begin. Not only does it have important
implications in design and how content is portrayed visually, but also
it will ultimately give you added levels of control over page
aesthetics.

U is for Usability
Ensuring that your web designs are user-centered and user-friendly is
quite a challenge, especially when designing for a diverse spectrum
of web users. Usability focuses around the notion that your users
don’t want more problems, they want solutions — and it’s your job to
give them what they want as effortlessly as possible.

Giving your visitors a smooth experience is part of the package of a
successful site.

With ties to interaction design, accessibility, information architecture,
user experience, human factors and more, the expansiveness and
significance of usability in modern web design needs not be
underscored further.

Page of 376 650

V is for Visitors
Without site visitors, what’s the point of a website? You can have the
most awesome website in the universe with mind-blowing content
that unravels the secrets of time traveling, but if there’s no one
reading it, your site may as well not exist. While not to detract from
the importance of content, a critical skill of design is to get eyeballs
on your site (and keep them there).

A social community will encourage people to continue visiting a site.

Many aspects of user-centered design focus on encouraging
community involvement as it identifies the need to emotionally tie
people to a site. However, beyond the social aspects, it’s also useful
to identify your visitors and work with them to make a website better.
This ties in quite nicely with the subject of sociology, ethnography
and empathy.

W is for Web Standards
The letter "W" could stand for so many things on the World Wide Web
that it became a hard choice to decide which item to discuss.
However, the idea of web standards underlines a core principle that
many in our industry hold dear. Knowing the various languages and
standards (and how they work) is something that everyone in the field
professionally should be familiar with.

Page of 377 650

Following specs strictly can be time-consuming.

Every language used on the web, from HTML to Python, has its own
set of specifications that outlines recommendations and best
practices as to how the language should be used (and in what
context). Following these standards can be tricky because it requires
a lot of reading, patience, and motivation, but if you want to master a
language like HTML, CSS, or Ruby (on Rails), you’ll need get used to
following standards and keeping your knowledge current.

X is for XML
A language that has so many purposes, yet gets pushed to the
wayside regularly in our industry, is XML. Being more flexible than
HTML in syntax, it’s almost like a Swiss Army knife in its unique and
multi-functional purpose. Used in so many aspects of the web — from
software UI settings, non-SQL local databases, public APIs of third-
party services like Twitter’s, Sitemaps, and syndication formats like RSS
— it’s become a mainstay of web development.

Page of 378 650

RSS is a content syndication language written with XML.

Oddly enough, while XML is so durable, it’s not generally considered
a core requirement to know. However, remember that with the web
constantly evolving, the need for XML is only likely to increase to
cope with our diversifying data needs.

Y is for "Yes!"
Web design and development is often made up of a series of
choices. Knowing how to say "no" is quite an important ability to gain.
Knowing when to say "yes" is, too. While this may seem a rather
woolly inclusion on our list, if you think about when you produce a
website, you constantly deal with micro-decisions, and thus, your
ability as a web designer is largely based on how you make
judgments and decisions.

Page of 379 650

Knowing when to say "yes" and "no" is critical.

While it remains an important part of our job — Do we take that
client? Should I use PHP? Does it degrade gracefully? — learning
about decision-making techniques and incorporating a sound
judgment process with your projects is as critical of a skill to learn as
code, content, design or theory. Bad decisions lead to a poorly built
sites and good decisions save you time, money and stress.

Z is for Zipping
Finally, we come to the last letter of the alphabet and what other
choice would fit into this section except zipping (or file compression).
The ability to reduce bandwidth consumption has many benefits,
including reduced data transfer costs, faster page loads for the visitor
and, when combined with caching, reductions in HTTP requests.

Page of 380 650

Caching is another useful method of reducing the amount of
bandwidth used.

Knowing how to optimize your content and code is one thing, but
being able to squeeze every last unnecessary byte from your images
and knowing how to carefully balance the quality and file weight is
critical as well. Learning to optimize website assets is an essential skill
which no budding web designer wants to be without.

Alphabet Soup
The web is an ever-evolving platform, and new techniques,
technologies and paradigms seem to appear quite regularly. But
luckily, we can pick our battles carefully and learn only what’s really
important to us and to our projects.

So now that you know your ABC’s, it’s time to get out there and
perhaps delve deeper into subjects that you feel will be of benefit to
you as a web designer.

Sources:

• https://www.w3.org/TR/WCAG20/

• http://acid3.acidtests.org/

• https://getfirebug.com/

• https://en.wikipedia.org/wiki/Ethnography

• https://www.w3counter.com/globalstats.php

Page of 381 650

https://www.w3.org/TR/WCAG20/
http://acid3.acidtests.org/
https://getfirebug.com/
https://en.wikipedia.org/wiki/Ethnography
https://www.w3counter.com/globalstats.php

• https://www.adobe.com/products/flash/

• https://venturebeat.com/2010/09/09/apple-loses-game-of-
chicken-allows-flash-and-other-conversion-tools-for-ios-apps/

• https://validator.w3.org/

• https://polldaddy.com/

• http://jquery.com/

• http://microformats.org/

• https://www.astuteo.com/slickmap/

• https://www.euromost.info/

• http://sibagraphics.com/utilities/the-meaning-of-colours/

• https://en.wikipedia.org/wiki/Web_content#Content_is_king

• http://rubyonrails.org/

• https://www.w3.org/TR/2012/REC-WOFF-20121213/

• https://www.sitepoint.com/community/

• https://www.sitemaps.org/protocol.html

• http://humaan.com/checklist/

Page of 382 650

https://www.adobe.com/products/flash/
https://venturebeat.com/2010/09/09/apple-loses-game-of-chicken-allows-flash-and-other-conversion-tools-for-ios-apps/
https://venturebeat.com/2010/09/09/apple-loses-game-of-chicken-allows-flash-and-other-conversion-tools-for-ios-apps/
https://validator.w3.org/
https://polldaddy.com/
http://jquery.com/
http://microformats.org/
https://www.astuteo.com/slickmap/
https://www.euromost.info/
http://sibagraphics.com/utilities/the-meaning-of-colours/
https://en.wikipedia.org/wiki/Web_content#Content_is_king
http://rubyonrails.org/
https://www.w3.org/TR/2012/REC-WOFF-20121213/
https://www.sitepoint.com/community/
https://www.sitemaps.org/protocol.html
http://humaan.com/checklist/

Ultimate Guide to Microformats:
Reference and Examples
If you’re not familiar with the concept of POSH (plain old semantic
HTML), the first thing to know is that producing semantic code that
reflects content contextually (rather than stylistically) is a critical
component of the web design process. While HTML has a whole
bunch of awesome elements by which to convey meaning, a slew of
purpose-built microformats (conventions) have been created to
better represent the kind of content that exists on the page. This
guide discusses popular microformats that can enhance the
semantics and interoperability of your website.

What Are Microformats?
Microformats are pretty interesting if you give them a chance. While
they aren’t a component of the W3C HTML spec, they do offer a
valuable and useful set of naming conventions (using class, id, rel and
rev attribute values) that identify points of interest on the page, such
as calendar events, links to the content’s license agreement, and even
quirky things such as cooking recipes.

While microformats are not a W3C standard yet–though many
microformats either have been recommended to the W3C as
standards or are in draft form–the level of support browsers and web
services have for them explains their utility.

Simply put: microformats are worth learning about and implementing
into the websites you build.

Page of 383 650

The official microformats website has a community wiki, discussion
board, and tools for you to use.

You might already be using microformats if you use a CMS like
WordPress, because it has built-in support for some simpler forms of
data, such as the rel attribute.

If you’re new to microformats, then you’re probably wondering why
you should bother using them. Well, they have a number of pros and
cons, but anything that would help our websites be better
understood by external machines–such as web spiders that index our
web pages–is worth the extra effort.

Page of 384 650

Of the many microformats, rel="nofollow" is probably the best known.

Because microformats use conventional HTML syntax and attributes,
you can use them in XHTML. Even XML pages (such as in RSS and
Atom feeds) can leverage microformats (and they do, if you use a
service like Feedburner). This dramatically increases their potential
use. They also combine well with RDFa and other meta data.

Benefits of Using Microformats

• They will improve the semantic value of your content.

• Web apps can use them to discover data about your website;
they can use them to interface with data on your site.

• Social networks are implementing them in user profiles so third-
party web services can interoperate with them.

• Browser extensions exist to give users access to microformat
data. For example, Michromeformats is a Google Chrome
extension that discovers embedded microformats on a web
page.

• Web spiders like Googlebot make use of them in site indexing.

Drawbacks of Microformats

• They require additional HTML markup.

• They’re yet another thing you’ll have to learn and maintain.

Page of 385 650

• Microformats exist for relatively few data types.

• They draw attention to your data (which can be mined).

• Web browsers do not support them uniformly.

The Operator add-on for Firefox detects microformats code and
makes them human-readable.

Page of 386 650

The hCard microformat allows Firefox add-ons like Tails Export to
discover and interface with a person’s virtual business card.

Microformats Reference Table
Each microformat has a unique purpose for presenting a certain type
of information, and they could all be potentially useful depending on
your needs.

While extensive details can be found in the specifications on the
microformats website, below is a quick reference listing of what
exists.

ADR Marks a street address

FOAF Describes a relationship to another website

Geo Marks a geographic location

hAtom Adds syndication-friendly content

hAudio Describes audio or a podcast

hCalendar Marks up event or date-based content

Page of 387 650

hCard For business and personal contacts

hListing Listings of goods and services

hMedia Lists media references

hNews Uses hAtom for journalistic news

hProduct Embeds extensive product details

hRecipe Marks up recipes and cooking data

hResume To showcase a CV or resume

hReview
Reviews and ratings of products and
services

hSlice
Pops up internal or external subscription
windows in IE8

rel

The rel attribute is a microformat for HTML
elements; some popular examples:

• rel="license"

• rel="nofollow"

• rel="tag"

• rel="directory"

• rel="enclosure"

• rel="home"

• rel="payment"

Robot Exclusion
Profile

Gives web crawlers instructions

VoteLinks Provides options to like or dislike a link

XFN Describes a relationship to a website

XFolk Lists favorite links

Page of 388 650

rel Attribute Values
To expound on the table above, here are descriptions of the rel
(which is short for "relationship") attribute values:

• License: identifies a license agreement (such as Creative
Commons or GPL) on a page.

• Nofollow: tells search engines not to add weight or value to
the linked resource.

• Tag: applies keywords to anchors in order to build tag clouds
or categories.

• Directory: indicates a listing in a directory (such as a folder) on
the current website.

• Enclosure: for anchors that link to downloadable files and
other non-web documents.

• Home: produces a permalink to the home page of a website.

• Payment: to be included in anchors that point to a purchasing
or payments page.

Using Microformats: Examples
Recommending microformats does little good without providing
illustrations on how to use them. So, here we’ll go over examples of
each microformat that can be implemented into your website.

First, the key concept to understand is that a microformat is identified
by a piece of data contained in the class or id value of an HTML
element.

The element could play a role in the type of data being displayed
(such as with anchor links), but if no semantic alternative exists, you
could use a div or span to wrap the name around the content.
Although using span might seem inelegant, it adds special meaning in
this case.

XMDP Adds resources to the page’s profile

XOXO Outlines a document or list of items

Page of 389 650

Adr
<ul class="adr">

<li class="street-address">123 North Street
<li class="locality">Manchester
<li class="postal-code">MX43 991
<li class="country-name">UK

Root name: adr

Attribute values:

• post-office-box

• extended-address

• street-address

• locality

• region

• postal-code

• country-name

FOAF
How to create a FOAF profile:

1. Visit FOAF-o-Matic and create your basic profile.

2. Save the document as foaf.rdf (so that you know what it’s for)
in a directory (perhaps named something like misc).

3. Use the link tag to reference your FOAF profile inside the
<head> of your HTML documents, for example: <link rel="meta"
type="application/rdf+xml" title="FOAF" href="foaf.rdf" />

4. Upload all of the FOAF-related files to your website. It’s now
ready to be used and indexed!

Page of 390 650

Geo
<p class="geo">

<abbr class="latitude" title="37.408183">N 37° 24.491</abbr> -
<abbr class="longitude" title="-122.13855">W 122° 08.313</abbr>

</p>

Root name: geo

Required attribute values:

• latitude

• longitude

hAtom
<div class="hAtom">

<div class="hentry">
<h3 class="entry-title">I Love Microformats</h3>
<abbr class="published"
title="2010-08-28T13:14:37-07:00">Aug 28, 2010</abbr>
<p class="category">RDF</
a></p>
<p>What do you think of
this post?</p>
<div class="entry-content">

<p>Place your content right here for maximum impact!</
p>

</div>
<dl>

<dt>Tags:</dt>
<dd>standards</
dd>
<dd><a href=" /tag/microformats/"
rel="tag">microformats</dd>

</dl>
</div>

</div>

Page of 391 650

Root name: hAtom, hFeed

Attribute values:

• hentry

• entry-title

• entry-content

• entry-summary

• bookmark

• published

• updated

• author

hAudio
<p class="haudio">

<em class="fn">Bohemian Rhapsody
by
<em class="fn org">Queen
found on <em class="album">A Night at the Opera

</p>

Root name: hAudio

Required attribute values:

• fn

• album

Other attribute values:

• contributor

• duration

• item

• position

• category

• published

Page of 392 650

• photo

• description

• sample

• enclosure

• payment

• price (currency, amount)

hCalendar
You can use the hCalendar Creator instead of writing the code
manually.

<p class="vEvent">
MySite
New website launch:
<abbr class="dtstart" title="20091202">December 2</abbr>-
<abbr class="dtend" title="20091204">4</abbr>, at
Google College, London, UK

</p>

Root name: vCalendar, vEvent

Required attribute values:

• dtstart

• summary

Other attribute values:

• location

• url

• dtend

• duration

• rdate

• rrule

• category

• description

Page of 393 650

• uid

• geo (latitude, longitude)

• attendee (partstat, role

• contact

• organizer

• attach

• status

hCard
You can use the hCard creator instead of writing the code
manually.
<ul id="hCard-John-Doe" class="vcard">

<li class="fn">John Doe
<li class="org">Special Stores
<a class="email"
href="mailto:John@doe.org">John@doe.org
<li class="adr">

<li class="street-address">44 Semantic Drive,
<li class="locality">Markup City,
<li class="region">World Wide Web,
<li class="postal-code">BP33 9HQ
<li class="country-name">Internet

<li class="tel">01234 56789

Root name: hCard

Required attribute values:

• fn

• n (family-name, given-name, additional-name, honorific-prefix,
honorific-suffix)

Page of 394 650

Other attribute values:

• adr (post-office-box, extended-address, street-address,
locality, region, postal-code, country-name, type, value)

• agent

• bday

• category

• class

• email (type, value)

• geo (latitude, longitude)

• key

• label

• logo

• mailer

• nickname

• note

• org (organization-name, organization-unit)

• photo

• rev

• role

• sort-string

• sound

• tel (type, value)

• title

• tz

• uid

• url

Page of 395 650

hListing
<div class="hlisting">

<p>
Office space
to rent(<abbr
class="dtlisted" title="20100202">2/2/10</abbr>)

</p>
<p class="description">50-square-foot space available in local
tech office at:

<div class="location adr">
123 Microland Road.
Cyberspace, <span
class="region">XD
12345
Mars

</div>
Available during <abbr class="dtexpired"
title="20100401">April 2010</abbr>
for $1500/qtr

</p>
<div class="lister vcard">Contact:

John Doe at <span
class="tel">(01) 12345-678900</
span>(<abbr class="type" title="cell">C</abbr>)

</div>
</div>

Root name: hlisting

Required attribute values:

• description

• lister (fn, email, url, tel)

• action (sell, rent, trade, meet, announce, offer, wanted, event,
service)

Page of 396 650

Other attribute values:

• version

• dtlisted

• dtexpired

• price

• item (fn, url, photo, geo, adr)

• summary

• tag

• permalink

hMedia
<div class="hmedia">

<h3 class="fn">Introduction to the Open Media Web</h3>
<object class="player" type="application/x-shockwave-flash"
data="http://www.exampleurl.com/video.swf">

<param name="movie" value="http://www.exampleurl.com/
video.swf"/>
<param name="allowScriptAccess" value="always"/>
<param name="allowFullScreen" value="true"/>

</object>

<a rel="enclosure" type="video/mp4" title="Download
the movie" href="http://www.exampleurl.com/
video.mp4">Video.mp4

</div>

Root name: hMedia

Page of 397 650

Attribute values:

• fn

• contributor

• photo

• player

• enclosure

hNews
<div class="hnews hentry item">

<h4 class="entry-title">Microformats are awesome</h4>
<p class="author vcard">
By John Doe,
<span class="org
fn">Associated Press -
19 April 2010</p>
<p>News story</p>

</div>

Root name: hNews

Required attribute values:

• hentry

• item

• entry-title

• author

• source-org

• vcard

• updated

Page of 398 650

Other attribute values:

• dateline

• geo (latitude, longitude)

• item-license

• principles

hProduct
<ul class="hproduct">

<li class="brand">MySite!
<li class="category">Software
<li class="fn">Microsoft Office 2007
<li class="description">The world's most popular office suite.</
li>
<li class="url">http://office.microsoft.com

Root name: hProduct

Required attribute value:

• fn

Other attribute values:

• brand

• category

• price

• description

• photo

• url

• review

• listing

• identifier (type (model, mpn, upc, isbn, issn, ean, jan, sn, vin,
sku), value)

Page of 399 650

hRecipe
<div class="hrecipe">

<h3 class="fn">Quick noodles</h3>
<p class="summary">Noodles are quick and easy, like this
example!</p>
<p class="ingredient hcard">2.5</
span>kilogrambag of instant
noodles.</p>
<ul class="instructions">

Put water on to boil,
Add the powder for the sauce,
Add the noodles, and stir till ready.

<p>Enough for 1 adult.</p>
<p>Preparation time is approximately 5
<abbr title="minutes">mins</abbr>.</p>
<p class="nutrition hcard">Noodles have more than <span
class="value">500 joules of
energy.</p>

</div>

Root name: hRecipe

Required attribute values:

• fn

• ingredient (value, type)

Page of 400 650

Other attribute values:

• yield

• instructions

• duration

• photo

• summary

• author

• published

• nutrition (value, type), tag

hResume
You can use the hResume creator instead of writing the code
manually.

<div id="hResume">
<p class="summary">I have been producing microformatted
data for years</p>
<ul class="vcard">

<li class="fn">Jane Doe
<li class="adr">
44 Broadband Street
Microland, <span
class="region">Internet
QW11 ER4
Email: <a class="email"
href="mailto:jane@doe.org">jane@doe.org
Homepage: <a class="url" href="http://
www.yoursitehere.com/">www.yoursitehere.com
Phone: +44 12345 67890

<ol class="vcalendar">

<li class="education vevent"><a class="url summary"
href="http://example/">Example(<abbr class="dtstart"

Page of 401 650

title="2007-02-11">2007</abbr> - <abbr class="dtend"
title="2009-03-22">2009</abbr>)

<ol class="vcalendar">

<li class="experience vevent"><span
class="summary">CEO, <span
class="location">Microland, <abbr class="dtstart"
title="2006-09-01">May 2006</abbr> - <abbr
title="2009-05-22">present</abbr>

<ul class="vcard">

<a href="/jdoe/index.php" class="include" title="Jane
Doe">
<li class="org">MicroLand
<li class="title">CEO

<p>I have skills in

<a class="skill" rel="tag" href="http://en.wikipedia.org/wiki/
HTML">HTML and
<a class="skill" rel="tag" href="http://en.wikipedia.org/wiki/
CSS">CSS.

</p>
</div>

Root name: hResume

Required attribute value:

• contact (hCard + adr)

Other attribute values:

• summary

• education (hCard + vEvent)

• experience (hCard + vEvent)

• affiliation (hCard)

• skills

• publications

Page of 402 650

hReview
You can use the hReview creator instead of writing the code manually.

<div class="hreview">
<p>5 out of 5 stars</p>
<h4 class="summary">Noodle Hut</h4>
Reviewer:
John Doe - <abbr class="dtreviewed"
title="20070418T2300-0700">April 18, 2007</abbr>

<p class="description item vcard">

Noodles Hut is one of the best
little places out there!

</p>

Visit date: April 2007
Food eaten: Instant noodles

</div>

Root name: hReview

Required attribute value:

• item (type (product, business, event, person, place, website, url),
hCard / hCalendar)

Page of 403 650

Other attribute values:

• reviewer (hCard)

• version

• summary

• dtreviewed

• rating

• description

• tags

• permalink

• license

hSlice
<div class="hslice" id="news">

<h2 class="entry-title">Recent News</h2>
…

</div>

Root name: hSlice

Required attribute values:

• ID

• entry-title

Other attribute values:

• entry-content

• end-time

• ttl

• feedurl

Page of 404 650

Rel
<a rel="license" href="http://creativecommons.org/licenses/by/
2.0/">Some rights reserved.
World Wide Web
consortium

Attribute values:

• license

• nofollow

• tag

• directory

• enclosure

• home

• payment

Robot Exclusion Profile
<head profile="http://example.org/xmdp/robots-profile#">
</head>
…
<p><img src="exclusive.png" class="robots-noarchive"
alt="Exclusive image" /></p>

Attribute values:

• robots-nofollow

• robots-follow

• robots-noindex

• robots-index

• robots-noanchortext

• robots-anchortext

• robots-noarchive

• robots-archive

Page of 405 650

VoteLinks
<a rev="vote-for" href="http://www.yoursitehere.com/vote.php?
id=yes" title="Vote yes!">Vote Yes!
<a rev="vote-abstain" href="http://www.yoursitehere.com/
vote.php?id=maybe" title="Vote maybe!">Vote Maybe!
<a rev="vote-against" href="http://www.yoursitehere.com/
vote.php?id=no" title="Vote no!">Vote No!

Attribute values:

• vote-for

• vote-abstain

• vote-against

XFN
You can use the XFN creator instead of writing the code manually.

My Site!

Attribute values:

• Friendship (contact, acquaintance, friend)

• Physical (met)

• Professional (co-worker, colleague)

• Geographical (co-resident, neighbor)

• Family (child, parent, sibling, spouse, kin)

• Romantic (muse, crush, date, sweetheart)

• Identity (me)

Page of 406 650

xFolk

<ul class="xfolkentry">

<a class="taggedlink" href="http://www.google.com"
title="Google">Google
<li class="description">The home page of the world's
biggest search engine
<li class="meta">Tags:<a rel="tag" href="http://del.icio.us/
tag/google">google<a rel="tag" href="http://
del.icio.us/tag/search">search

Root name: xFolkEntry

Required attribute values:

• description

• taggedlink

• title

Other attribute value:

• meta (tag)

XMDP
<head profile=”http://www.mysitehere.com/profilename”>

Root reference: profile

Page of 407 650

XOXO
<ol class="xoxo">

Subject 1

item a
item b

Subject 2

item a
item b

Root name: XOXO

Conclusion
Plenty of microformats already exist, and the community is always
looking for ways to use existing elements to convey more information
about our web pages. They benefit not only search engines and
social networks, but the users that traffic our site.

Sources:

• https://en.wikipedia.org/wiki/Semantic_HTML

• http://microformats.org/

• https://support.google.com/webmasters/answer/96569?hl=en

• https://chrome.google.com/webstore/detail/microformats/
oalbifknmclbnmjlljdemhjjlkmppjjl

• https://mike.kaply.com/operator/

• https://addons.mozilla.org/en-US/firefox/addon/tails-export/

• http://www.foaf-project.org/

Page of 408 650

https://en.wikipedia.org/wiki/Semantic_HTML
http://microformats.org/
https://support.google.com/webmasters/answer/96569?hl=en
https://chrome.google.com/webstore/detail/microformats/oalbifknmclbnmjlljdemhjjlkmppjjl
https://chrome.google.com/webstore/detail/microformats/oalbifknmclbnmjlljdemhjjlkmppjjl
https://mike.kaply.com/operator/
https://addons.mozilla.org/en-US/firefox/addon/tails-export/
http://www.foaf-project.org/

• https://msdn.microsoft.com/en-us/library/cc304073%28VS.
85%29.aspx

• http://gmpg.org/

• http://www.ldodds.com/foaf/foaf-a-matic

• http://microformats.org/code/hcalendar/creator

• http://microformats.org/code/hcard/creator

• http://microformats.org/code/hreview/creator

• http://gmpg.org/xfn/creator

Page of 409 650

https://msdn.microsoft.com/en-us/library/cc304073%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/cc304073%28VS.85%29.aspx
http://gmpg.org/
http://www.ldodds.com/foaf/foaf-a-matic
http://microformats.org/code/hcalendar/creator
http://microformats.org/code/hcard/creator
http://microformats.org/code/hreview/creator
http://gmpg.org/xfn/creator

Becoming a Better Web Designer
Whenever a student wanting to work in the design industry asks me
for advice, the first thing that comes to my mind is the importance of
maintaining a current and up-to-date skill set. Often, we spend so
much time focusing on the actual jobs at hand that we neglect to
nourish and refresh our knowledge.

This article aims to highlight the importance of setting aside time for
self-improvement, with recommendations on how you can keep
learning to stay ahead of the curve.

A Need to Improve
While many people may feel that they can’t afford (or have the time)
to put aside some time in order to learn and keep up with industry
developments, I would argue that they also can’t afford the losses in
competitiveness due to having outdated knowledge.

Often, the individuals who stick with what they know are the ones
finding themselves out of jobs because the nature of the profession,
the technologies, and the medium is such that it evolves quickly.
Conventions change, web languages are updated or become
obsolete, deployment methods shift from technology to technology.
It’s survival of the fittest, with "fit" being defined as someone who
keeps up with current demands.

Page of 410 650

Imagine if Yahoo! had rested on its laurels.

Learning new skills doesn’t have to be complicated, and it doesn’t
even have to be expensive. And in an industry that is always changing
— and where becoming stale means being unable to perform — the
need for continual self-education and self-training is very important.

With all of that in mind, I’d like to suggest a few ways we as web
designers can keep ourselves current.

Education
The first thing I’ll mention is probably the most expensive in terms of
money and time. However, it’s worth discussing because it is the
traditional way of learning a particular profession. Education is
probably the most obvious route to self-improvement. You can find
courses on pretty much anything — from graphic design to ancient
Mediterranean studies — these days; courses tailored to your exact
interests and needs.

Page of 411 650

The Open University is based in the UK and offers plenty of structured
courses.

The benefits of sitting in a classroom are quite apparent if you thrive
on structured learning plans. The experience of being in a classroom
also means you’ll get to hang out with peers who’ll be in the same
position.

The problems with education, especially in very traditional colleges, is
that courses might be outdated and can cost quite a lot.

Page of 412 650

Education Resources:

• O’Reilly School - http://www.oreillyschool.com/

• The Top Online Web Design Degrees - http://
www.webdesignschoolsguide.com/

• Design Schools and Design Degrees Online Directory

• CIW Certified - https://www.ciwcertified.com/

• WaSP InterAct

• Full Sail University Web Design & Development Bachelor’s
Degree – Online - https://www.fullsail.edu/degrees/web-
design-and-development-bachelor

Internships
In terms of getting an internship at a design agency, the learning you
get is often practical. You can get to see how professionals handle
their job tasks, and learn through hands on experience.

Even well known agencies might have an intern position available to
you.

Often, we learn a lot through observation. If you’re a beginning
freelancer or a student just finding his way through the world, getting
into a proper business as an intern will give you not only the guiding
hands and experience of professionals, but also potential job offers if
you prove yourself to be a good fit for the company.

Page of 413 650

http://www.oreillyschool.com/
http://www.webdesignschoolsguide.com/
http://www.webdesignschoolsguide.com/
https://www.ciwcertified.com/
https://www.fullsail.edu/degrees/web-design-and-development-bachelor
https://www.fullsail.edu/degrees/web-design-and-development-bachelor
https://www.fullsail.edu/degrees/web-design-and-development-bachelor

Potential downsides are that internships may be unpaid (voluntary).
An internship is also a real commitment in both time and effort.
However, the experience may be truly rewarding if you are a
committed individual.

Also, with an internship, the value you get depends on who you’ll be
working for and what they’ll task you with. If you get stuck in an
internship that only deals with activities such as running to Starbucks
to get the design team their coffee or sorting out mail, then you
would get less value, learning-wise, than in an internship that gets you
right in the mix of things and interacting with professional designers.
That’s one thing to keep in mind when searching for an internship.

Job Boards for Finding an Internship Resources:

• Sensational Jobs - https://www.sensationaljobs.com/

• Smashing Jobs - https://www.smashingmagazine.com/jobs/

• Authentic Jobs - https://authenticjobs.com/

• Krop Jobs - https://www.krop.com/creative-jobs/

Conferences and Workshops
Conferences and workshops can be found all over the world,
covering topics ranging from broader topics such as Web Design to
more specialized fields like UX and IA. There are even dedicated
events and meetups to particular technologies such as JavaScript or
Adobe Flash.

Page of 414 650

https://www.sensationaljobs.com/
https://www.smashingmagazine.com/jobs/
https://authenticjobs.com/
https://www.krop.com/creative-jobs/

All over the world, you’ll find a range of conferences at different
budgets and topics (such as The Future of Web Design).

A conference is a time-honored tradition for many designers and
developers in which a bunch of caffeine-intoxicated geeks gets
together to learn from industry experts and each other. While these
events can be particularly expensive, they usually cover a wide range
of subjects and can allow you the time to speak to people you
respect, make a few friends and, in some cases, get some extra
business. If you’re socially inclined, it can turn into a great few days of
learning, sharing and socializing.

Conference Resources:

• Upcoming Conferences 2010 - http://
www.smashingmagazine.com/2010/09/09/upcoming-web-
design-and-development-conferences-in-2010/

• Web Events - http://www.d.umn.edu/itss/support/Training/
Online/webdesign/events.html

• List of conferences - http://djdesignerlab.com/2010/03/24/web-
conferences-and-events-every-professional-must-attend/

Over recent years, workshops have really evolved into something
quite special. While many exist in which you visit a particular venue
and learn about a subject from an industry guru, plenty of websites

Page of 415 650

http://www.d.umn.edu/itss/support/Training/Online/webdesign/events.html
http://www.d.umn.edu/itss/support/Training/Online/webdesign/events.html
http://www.d.umn.edu/itss/support/Training/Online/webdesign/events.html
http://djdesignerlab.com/2010/03/24/web-conferences-and-events-every-professional-must-attend/
http://djdesignerlab.com/2010/03/24/web-conferences-and-events-every-professional-must-attend/
http://djdesignerlab.com/2010/03/24/web-conferences-and-events-every-professional-must-attend/

now also offer web-based workshops that allow you to learn from
the comforts of your own workspace.

While you won’t get a certificate or qualification (as you would
through a college), the benefits from these workshop sessions are
that you’ll get a ton of knowledge on a specialist subject in a short
period of time and in a structured manner.

Workshop Resources:

• IWA-HWG eClasses - http://iwa-hwg.eclasses.org/

• Workshops for the Web - http://workshopsfortheweb.com/

Networking and Mentoring
Getting to know your fellow designers and developers is a big part of
being involved in the industry. It’s surprising to see how many people
isolate themselves from the design and development community and
thereby fail to get the benefits of networking (and mentoring).

Getting your name out there socially will give you a range of benefits,
not just to your social life, but also in terms of boosting your own
knowledge and being able to assist others in improving their own
work.

Social networking is quite a simple idea. You join a community —
whether it’s offline such as a chamber of commerce group or online
like a forum or social networking service like Twitter — and then you
interact with other people!

Not only will you make friends and gain useful industry contacts, but
also, you can learn plenty from other people’s experiences. Even
better is that you aren’t forced to dedicate a set amount of time to
networking; you can participate in networking on your own time.

Networking Resources:

• Web Standards Group - http://www.webstandardsgroup.org/

• SitePoint Forums - https://www.sitepoint.com/community/

• CSS Discuss - http://www.css-discuss.org/

• Designers Talk - http://www.designerstalk.com/forums/

Page of 416 650

http://iwa-hwg.eclasses.org/
http://workshopsfortheweb.com/
http://www.webstandardsgroup.org/
https://www.sitepoint.com/community/
http://www.css-discuss.org/
http://www.designerstalk.com/forums/

• How Social Media Works

Mentoring is much like networking in terms of the social interaction
with other people, but it does give you a slightly different route to
learning.

Some charge for consultancy services and other people mentor for
free… both work!

Finding someone to mentor may seem beneficial just to the individual
being mentored, but when you think about it, the student is going to
be testing your knowledge and sharing their thoughts with you. This
gives you motivation to keep your knowledge up to date, as well as
discover things you might not have thought about. As they say, the
best way to learn is to teach.

Mentoring Resources:

• Find a business mentor

• Finding mentors

Page of 417 650

Books, Blogs, Articles, Podcasts and Videos
If you’re a bit shy and don’t really like the idea of going back to school
or being in a room with other people, consuming books, articles,
eBooks, videos and slideshows may be a perfect method for self-
betterment.

This method of gaining new knowledge is by far the most prevalent.
There are literally thousands of cool titles and resources sitting out
there waiting to be purchased, read and watched, as well as a lot of
free content too!

You are here… and while Six Revisions is not a book, it’ll still teach you
oodles of useful information.

Books are probably the most widely recognized resource when it
comes to learning about a specific technology, and there are plenty
of articles and resources online. With millions of titles to choose from
on just about every subject you can imagine, they can be a
reasonably priced, go-at-your-own-pace alternative of learning.

Blog and Website Resources:

• A List Apart - http://alistapart.com/

• Smashing Magazine - https://www.smashingmagazine.com/

• Six Revisions (of course)

• Web Designer Deport - https://www.webdesignerdepot.com/

Page of 418 650

http://alistapart.com/
https://www.smashingmagazine.com/
https://www.webdesignerdepot.com/

• UX Booth - http://www.uxbooth.com/

• UX Magazine - http://uxmag.com/

• Onextra Pixel - http://www.onextrapixel.com/

• FreelanceSwitch - https://studio.envato.com/freelance-switch/

eBook and Article Resources:

• Adobe Typography Primer - https://blogs.adobe.com/
typblography/tag/typography-primer

• Art and Science of Web Design, The - http://www.veen.com/
jeff/archives/000747.html

• Building Accessible Websites - https://joeclark.org/book/
sashay/serialization/

• Designing For The Web - https://designingfortheweb.co.uk/

• Designing Interfaces - http://designinginterfaces.com/

• Dive Into Accessibility - https://github.com/nfreear/
diveintoaccessibility

• Elegant Web Typography - https://www.slideshare.net/
jeff_croft/elegant-web-typography-presentation

• Elements of Typographic Style For The Web, The - http://
webtypography.net/

• Eloquent JavaScript - http://eloquentjavascript.net/

• Getting Real - https://basecamp.com/books/getting-real

• Google SEO Guide - https://support.google.com/webmasters/
answer/7451184?hl=en

• Guide to Guerrilla Freelancing, A - http://temza.com/e-books/
Guerrilla-Freelancing.pdf

• How Do You Design (Beta)? - http://www.dubberly.com/
articles/how-do-you-design.html

• Introduction to Good Usability - https://temza.com/e-books/
introduction-to-good-usability.pdf

• jQuery Fundamentals - http://jqfundamentals.com/legacy/

Page of 419 650

http://www.uxbooth.com/
http://uxmag.com/
http://www.onextrapixel.com/
https://blogs.adobe.com/typblography/tag/typography-primer
https://blogs.adobe.com/typblography/tag/typography-primer
https://blogs.adobe.com/typblography/tag/typography-primer
http://www.veen.com/jeff/archives/000747.html
http://www.veen.com/jeff/archives/000747.html
https://joeclark.org/book/sashay/serialization/
https://joeclark.org/book/sashay/serialization/
https://designingfortheweb.co.uk/
http://designinginterfaces.com/
https://github.com/nfreear/diveintoaccessibility
https://github.com/nfreear/diveintoaccessibility
https://www.slideshare.net/jeff_croft/elegant-web-typography-presentation
https://www.slideshare.net/jeff_croft/elegant-web-typography-presentation
https://www.slideshare.net/jeff_croft/elegant-web-typography-presentation
http://webtypography.net/
http://webtypography.net/
http://eloquentjavascript.net/
https://basecamp.com/books/getting-real
https://support.google.com/webmasters/answer/7451184?hl=en
https://support.google.com/webmasters/answer/7451184?hl=en
https://support.google.com/webmasters/answer/7451184?hl=en
http://temza.com/e-books/Guerrilla-Freelancing.pdf
http://temza.com/e-books/Guerrilla-Freelancing.pdf
http://www.dubberly.com/articles/how-do-you-design.html
http://www.dubberly.com/articles/how-do-you-design.html
http://www.dubberly.com/articles/how-do-you-design.html
https://temza.com/e-books/introduction-to-good-usability.pdf
https://temza.com/e-books/introduction-to-good-usability.pdf
https://temza.com/e-books/introduction-to-good-usability.pdf
http://jqfundamentals.com/legacy/

• KnockKnock - http://sethgodin.typepad.com/seths_blog/
2005/09/free_ebook_1_no.html

• Meet Your Type - http://www.optimiced.com/wp-uploads/
2010/10/meet-your-type-guide-by-fontshop.pdf

• Mobile Web Developers Guide (dotMobi) - https://
www.networksolutions.com/help/mobi-guide.pdf

• Opera Standards Curriculum - https://webplatform.github.io/

• PeachPit WDRG

• Programmers Intro to PHP4 - http://web.archive.org/web/
20070412121056/http:/apress.com/free/content/
ProgrammersIntroductionToPHP4.pdf

• Programming VB.NET - http://computer-books.us/vb_0004.php

• Search User Interfaces - http://searchuserinterfaces.com/book/

• Software Engineering for Internet Apps - http://
philip.greenspun.com/seia/

• Task-Centered UI Design - http://hcibib.org/tcuid/

• Teach Yourself JavaScript in 24 Hours (Sams) - https://
web.archive.org/web/20160314103602/http://
www.informit.com/library/library.aspx?
b=sty_javascript_24_hours

• Teach Yourself HTML 4 in 24 Hours (Sams) - https://
web.archive.org/web/20160310185016/http://
www.informit.com/library/library.aspx?b=STY_html_24hours

• Time Management for Creative People - https://
www.wishfulthinking.co.uk/2007/12/03/time-management-for-
creative-people-free-e-book/

• Type Classification E-Book - http://justcreative.com/featured-
articles/type-classification-ebook/

• UIAccess: Just Ask! Integrating Accessibility Through Design -
http://uiaccess.com/accessucd/contents.html

• Usability.gov – The Guidelines - https://guidelines.usability.gov/

Page of 420 650

http://sethgodin.typepad.com/seths_blog/2005/09/free_ebook_1_no.html
http://sethgodin.typepad.com/seths_blog/2005/09/free_ebook_1_no.html
http://sethgodin.typepad.com/seths_blog/2005/09/free_ebook_1_no.html
http://www.optimiced.com/wp-uploads/2010/10/meet-your-type-guide-by-fontshop.pdf
http://www.optimiced.com/wp-uploads/2010/10/meet-your-type-guide-by-fontshop.pdf
http://www.optimiced.com/wp-uploads/2010/10/meet-your-type-guide-by-fontshop.pdf
https://www.networksolutions.com/help/mobi-guide.pdf
https://www.networksolutions.com/help/mobi-guide.pdf
https://www.networksolutions.com/help/mobi-guide.pdf
https://webplatform.github.io/
http://web.archive.org/web/20070412121056/http:/apress.com/free/content/ProgrammersIntroductionToPHP4.pdf
http://web.archive.org/web/20070412121056/http:/apress.com/free/content/ProgrammersIntroductionToPHP4.pdf
http://web.archive.org/web/20070412121056/http:/apress.com/free/content/ProgrammersIntroductionToPHP4.pdf
http://web.archive.org/web/20070412121056/http:/apress.com/free/content/ProgrammersIntroductionToPHP4.pdf
http://computer-books.us/vb_0004.php
http://searchuserinterfaces.com/book/
http://philip.greenspun.com/seia/
http://philip.greenspun.com/seia/
http://hcibib.org/tcuid/
https://web.archive.org/web/20160314103602/http://www.informit.com/library/library.aspx?b=sty_javascript_24_hours
https://web.archive.org/web/20160314103602/http://www.informit.com/library/library.aspx?b=sty_javascript_24_hours
https://web.archive.org/web/20160314103602/http://www.informit.com/library/library.aspx?b=sty_javascript_24_hours
https://web.archive.org/web/20160314103602/http://www.informit.com/library/library.aspx?b=sty_javascript_24_hours
https://web.archive.org/web/20160314103602/http://www.informit.com/library/library.aspx?b=sty_javascript_24_hours
https://web.archive.org/web/20160310185016/http://www.informit.com/library/library.aspx?b=STY_html_24hours
https://web.archive.org/web/20160310185016/http://www.informit.com/library/library.aspx?b=STY_html_24hours
https://web.archive.org/web/20160310185016/http://www.informit.com/library/library.aspx?b=STY_html_24hours
https://web.archive.org/web/20160310185016/http://www.informit.com/library/library.aspx?b=STY_html_24hours
https://www.wishfulthinking.co.uk/2007/12/03/time-management-for-creative-people-free-e-book/
https://www.wishfulthinking.co.uk/2007/12/03/time-management-for-creative-people-free-e-book/
https://www.wishfulthinking.co.uk/2007/12/03/time-management-for-creative-people-free-e-book/
http://justcreative.com/featured-articles/type-classification-ebook/
http://justcreative.com/featured-articles/type-classification-ebook/
http://justcreative.com/featured-articles/type-classification-ebook/
http://uiaccess.com/accessucd/contents.html
https://guidelines.usability.gov/

• Vignelli Canon, The - http://www.vignelli.com/home/
bookmagazine/canon.html

• Web Book, The

• Web Designers Success Guide - http://airgid.com/wp-content/
uploads/2012/06/wdsg_fitc.pdf

• Web Style Guide - http://webstyleguide.com/wsg3/

• Website Migration Handbook, The - https://
davidhobbsconsulting.com/migration_handbook

• Why Design? (AIGA)

• Woork Handbook, The - https://protuts.net/wp-content/
uploads/wordpress-ebook-the-woork-handbook.pdf

• XML Programming - http://web.archive.org/web/
20070411121620/http:/www.apress.com/free/content/
xmlprogramming.pdf

If you’re not one for going through pages of text in order to learn, and
you prefer something that engages many of your senses, perhaps
you might consider the range of audio and video podcasts that exist
for designers and developers.

Podcasts like those provided by the 5×5 network offer design and
development fun!

Page of 421 650

http://www.vignelli.com/home/bookmagazine/canon.html
http://www.vignelli.com/home/bookmagazine/canon.html
http://www.vignelli.com/home/bookmagazine/canon.html
http://airgid.com/wp-content/uploads/2012/06/wdsg_fitc.pdf
http://airgid.com/wp-content/uploads/2012/06/wdsg_fitc.pdf
http://webstyleguide.com/wsg3/
https://davidhobbsconsulting.com/migration_handbook
https://davidhobbsconsulting.com/migration_handbook
https://protuts.net/wp-content/uploads/wordpress-ebook-the-woork-handbook.pdf
https://protuts.net/wp-content/uploads/wordpress-ebook-the-woork-handbook.pdf
https://protuts.net/wp-content/uploads/wordpress-ebook-the-woork-handbook.pdf
http://web.archive.org/web/20070411121620/http:/www.apress.com/free/content/xmlprogramming.pdf
http://web.archive.org/web/20070411121620/http:/www.apress.com/free/content/xmlprogramming.pdf
http://web.archive.org/web/20070411121620/http:/www.apress.com/free/content/xmlprogramming.pdf

While not on many people’s radars, these shows give you industry
news and great advice for free! In addition, there’s plenty of paid and
free slideshows and videos which can train you in a particular craft
while visually orientated and worthy of consideration.

What’s convenient about podcasts, especially audio podcasts, is that
you can listen to them while commuting to work.

Podcast Resources:

• Web Hosting Show - https://www.webhostingshow.com/

• Web Axe - http://www.webaxe.org/category/podcast/

• Web Dev Radio - http://webdevradio.com/

• Web 2.0 Show - http://web20show.com/

• Web Designer Magazine - https://www.listennotes.com/bg/
podcasts/web-designer-podcasts-imagine-publishing-
epvIRL54wDX/

• Think Vitamin Radio - https://podcasts.apple.com/gb/podcast/
think-vitamin-radio/id351340191

• User Interface Engineering - https://uie.fm/shows

• This Week in Start-ups - http://feeds2.feedburner.com/twist-
audio

• SitePoint Podcast - https://www.sitepoint.com/web/podcast/

• Boagworld - https://boagworld.com/show/

• 5×5 Network - http://5by5.tv/

• TWiT.TV - https://twit.tv/

• CNET Podcasts - https://www.cnet.com/g00/cnet-podcasts/?
i10c.encReferrer=&i10c.ua=1&i10c.dv=14

Video Resources:

• Lynda Training - https://www.lynda.com/

• Slideshare Presentations - https://www.slideshare.net/

Page of 422 650

http://www.webaxe.org/category/podcast/
http://webdevradio.com/
http://web20show.com/
https://uie.fm/shows
http://feeds2.feedburner.com/twist-audio
http://feeds2.feedburner.com/twist-audio
https://boagworld.com/show/
http://5by5.tv/
https://twit.tv/
https://www.cnet.com/g00/cnet-podcasts/?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.cnet.com/g00/cnet-podcasts/?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.cnet.com/g00/cnet-podcasts/?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.lynda.com/
https://www.slideshare.net/

• Must See Design Videos - https://
www.smashingmagazine.com/2016/03/never-stop-learning-
with-live-streams-and-conference-videos/

• Think Vitamin Videos - https://teamtreehouse.com/library

• SitePoint Videos - https://www.sitepoint.com/premium/

Engaging in Side Projects
A final route worthy of consideration is learning through side projects.
Taking on a side project allows you to learn and sharpen your skills by
doing something fun. It’s not a secret that personal projects are good
for you.

Consider having a side project to help you learn at your own pace.
Your side project can be pro bono design work for an organization
you’re passionate about or building a web app that solves a problem
(and if it’s good, who knows, it might become profitable). You could
start a blog, create a podcast, self-publish your own books or eBooks,
provide tutorials — all of which can reinforce the things you learn day-
by-day.

The ability to publish your own book through services such as Lulu
has become quite popular!

While side projects may arguably be among the more ambiguous,
indirect ways to learn, it’s also true that theory you learn from books
and classrooms will only take you so far and that practical experience
has its own benefits.

Page of 423 650

https://www.smashingmagazine.com/2016/03/never-stop-learning-with-live-streams-and-conference-videos/
https://www.smashingmagazine.com/2016/03/never-stop-learning-with-live-streams-and-conference-videos/
https://www.smashingmagazine.com/2016/03/never-stop-learning-with-live-streams-and-conference-videos/
https://teamtreehouse.com/library
https://www.sitepoint.com/premium/

Never Stop Learning
Surviving and succeeding in this industry requires constant upkeep of
the things you already know. If there’s one thing that I admire above
everything else, it’s the enthusiasm and craving for knowledge that
many of us still manage to maintain after working in this fast-paced
environment for years. If you only dedicate a couple of hours a week
to self-improvement, that’s still better than nothing.

In any business, you don’t want to become the weak link in the chain,
and setting yourself up with some long-term goals will help you avoid
becoming the individual whose work has the reputation of being
outmoded.

There is always something new to learn, and those awesome new
skills can bring more value to you and the people you work with/for.
So go out and buy that book you saw on Amazon.com, learn that
new web language you’ve been putting off for too long, read that
new blog everyone keeps talking about, sign up for that workshop, or
watch that video — whatever you do, just never stop learning!

Sources:

• http://www.open.ac.uk/

• https://thisibelieve.org/essay/12278/

• https://www.lulu.com/ 

Page of 424 650

http://www.open.ac.uk/
https://thisibelieve.org/essay/12278/
https://www.lulu.com/

Ways to Horrify Website Designers
Most people love a good scare. That moment where you almost
jump out of your skin can pump you full of adrenaline and get your
senses heightened.

Unfortunately, while zooming through a theme park ride at epic
speeds or watching Michael Myers chase Jamie Lee Curtis with a knife
will give us a "fun" type of scare, the web — whether by design or
sadism — tends to be full of the kind of scary traps that would make
the Jigsaw Killer’s creepy puppet giggle with glee.

Horrors on the Web
As you may have guessed, I’m a fan of horror movies. I could happily
spend a few hours watching Sadako from The Ring franchise scare
people to death. However, as we all know, the real world can be just
as terrifying (or more so) than the world of movies.

While I love the medium of the web, and the awesome things we can
do with it, a few things about it chill me to the bone.

Internet Explorer 6 or Michael Myers: both shorten your lifespan!

Much of the web’s horrors usually arises through no fault of the site
designer and are often misguided attempts at solving a particular
requirement for a site. In many cases, people implement such spooky

Page of 425 650

site features to draw the attention of site visitors or to add something
that the site owner thinks is cool.

Let’s take a look at some scary things the web has to offer.

Automatically Playing Music
Of the web’s many horrors, automatically playing music has to be
high on the list of terrifying web crimes.

Imagine that you’re sitting in the office and have forgotten that your
speakers were cranked up from showing co-workers a funny YouTube
video.

A few hours later, you wonder onto a site you’ve never visited before.
Suddenly, Bohemian Rhapsody blasts through your ears, nearly
shattering your eardrums. That incident might have sent coffee into
your keyboard or given you a heart attack.

One, two, Freddy’s coming for you, three, four better… <insert MIDI
sound file here>.

Automatically playing music has been popular for many years but it’s
still not a very good idea. Even with an "off" button provided, it won’t
resolve the initial scare of the noise pollution.

Page of 426 650

Flashing Content
While scaring people with audio is effective, an equally annoying
method to creep people out is by using rapidly flashing content.

Have you ever been on a site where tons of things start occurring on
the page all at once and your eyes are forced to bounce around the
browser to get a handle on it? Yes, this isn’t something that’ll make
you jump, but it’s still a worthy horror!

Like the twins in The Shining, we really don’t want random things
jumping in front of us.

Animated GIFs have mainly been ostracized for their ability to turn
your professional-looking site into a kid’s TV show on acid (with
dancing hamsters and Homer Simpson avatars). It’s scary stuff to see
in modern sites.

Hideous Source Code
Our next horror is dedicated to designers and developers who
deeply care about quality and best practices. Yes people, there’s
nothing like seeing a website that seems OK on the surface only to
look under the hood and be reduced to tears at the sight of the
source code.

Obtrusive JavaScript smeared everywhere, copy/paste scripts, divitis,
table-based layouts, deprecated code — a site appearing to be
resurrected from the 90s.

Page of 427 650

If you’ve seen the mummy, he’s not so pretty once you’ve taken off
the wrapping!

Beyond the issues of not following web standards and best practices,
the scale of the terror is most felt when you realize that the site owner
of the unfortunate site probably paid good money for it.

With the next generation of web designers being more aware of how
important quality code is, this horror should eventually be reduced to
obscurity.

But for the moment, the shock of seeing some gnarly, bloated code is
enough to freak a web designer out.

Sudden Client Deadlines
Here’s another way to terrify a designer and, in this case, it’s the result
of something our clients do rather than what we do to ourselves or
each other.

You’ve got a contract in place, and you have a friendly client who’s a
bit lacking in clarity on the project. Suddenly, from nowhere, you
receive an email in which the individual says they need to push the
deadline up to tomorrow!

As you don’t want to lose your client, you work through the night to
finish the work. Scary thought, right?

Page of 428 650

Working with clients can quickly become like an Alien vs. Predator
movie.

Communication is important in any project but, unfortunately, it’s
something that seems to degrade regularly between designers and
clients.

While contracts can avoid scope creep and while project planning
can help limit these types of problems, it’s both sad and frightening to
hear the stories of those who have suffered at the hands of their
client’s needs (some clients may be the most terrifying creatures in
existence).

Outdated Technology
Our next horror has given many designers and developers
nightmares. Outmoded IT can be scary: anyone who still fights against
the tide in developing for Internet Exploder 6 will testify to the torture
that can ensue from watching your beautiful design be reduced into a
hideous Frankenstein-like creature.

In addition, the memory of Microsoft FrontPage code sends a shiver
through our spines.

Page of 429 650

Vampires have a habit of living for long periods of time, just like
Internet Explorer 6.

It goes without saying that like a Stephen King style horror novel, the
ravages of the web’s aging leave us being forced to endure the
problems of compatibility in a manner we cannot easily escape.

Just like Freddy Krueger, IE6 keeps returning to stalk us even though
we’ve tried to kill it off more times than Rasputin.

Continuing to test for compatibility and ensuring that our code is built
using standards and best practices is part of the job. For the sake of
our site users, we need to be pragmatic and embrace this terror!

Obnoxious Scripts
Nobody likes feeling as if they’ve lost all control of a situation.
Obnoxious scripts that automatically resizes a window or disables
right-click functionality is just plain horrific. Obnoxious scripts are
among the most inflictive terrors online.

Page of 430 650

Werewolves lose control at the full moon. Internet users suffer it on a
regular basis.

It’s only natural that site owners may want to protect their assets from
being stolen; but this should never be done at the user’s expense.
Crippling the right-click functionality, for example, may seem like
you’re preserving your content, but it’s also going to hurt the visitor
who isn’t there to do bad things. In addition, unscrupulous individuals
that do want to steal content already have workarounds to these
things anyways.

Exploitative Site Activities
Beyond losing control of your browser (thanks to some ugly
JavaScript abuse), there’s some other scripts which are worthy of
inclusion within this horror gallery, most notably the redirects and
sudden popup windows that occur without permission.

Nothing surprises your visitors more than unexpected navigational
events, and I am sure that after the 90s, many of us fear the
unexpected redirect on the premise that we may end up in some
malware-infested site.

Page of 431 650

Don’t be like Jigsaw, avoid trapping your visitors into situations they
don’t want!

If that wasn’t enough horror to contend with, the levels of malware
seems to regularly be on the rise, privacy has become a serious issue
and there’s always the questionable use of redirection and page
refreshes. As a site designer, we need to tackle these many adversities
in order to gain our visitor’s trust.

Get The Oxygen, Nurse!
As you think about the web’s many problems, it may seem like a
never-ending battle between good and evil (and unfortunately, it’s
one that may never end).

From the outright scary (that will literally startle you and make you
jump) to the factually scary (which could make you feel a little
depressed), the web is filled with monsters and creatures that keep us
on our toes. Sometimes it’s comical, sometimes it’s quite annoying,
many times it’s genuinely wrong — but like with any good horror film
it’s full of twists.

As we become more digitally dominated — as our lives increasingly
revolve around the internet — the need to fight off these horrors is in
our best interests because horror really isn’t much fun when it directly
affects us and our users.

Page of 432 650

60 Questions to Consider When
Designing a Website
We spend a lot of time asking ourselves, our clients and other people
questions. Whether it’s choosing the perfect shade of green for our
latest web layout or figuring out how to implement a complex
typographical solution, the ability to ask the right questions is among
the most critical of skills for a web designer. In this article, we’ll go
over 60 specific questions that web professionals should ask before
taking their website public.

Why Asking Yourself Questions Is Important
Many professionals work with the aid of checklists, while others
routinely check for certain issues as the design evolves. While there
isn’t a sure-fire way to avoid the embarrassment of forgetting
something post-launch, the habit of continually questioning your work
as you develop a website is critical. Sometimes it can be as simple as
"Does this work?"; in other cases, more technical questions need to be
asked (and answered).

The 25-point Website Usability Checklist (PDF) can be a helpful aid to
your workflow.

It doesn’t make the job any easier to second-guess yourself into a
state of neurosis (something perfectionists do quite often) or to make

Page of 433 650

blind decisions. There’s no perfect method for gauging a project’s
needs or the decisions we make, but asking difficult questions during
the process helps us avoid issues later on.

15 Questions for Project Management
One of the central tasks of web design is project management.
Building a new website is like setting the foundation for a house. With
so many details to deal with, planning ahead and managing the
ongoing tasks is essential.

Basecamp is a popular and effective project management app.

1 Has the client signed the contract? Working without a contract is
extremely risky.

2 Do you know what the final product should look like? Having a
solid plan of action, including a few diagrams, wireframes,
prototypes or mock-ups, can enhance clarity.

3 Has all of the content been written? A website without content is
like a painting without a canvas; ideally, a website should be built
around the content, not vice versa.

4 Does the website require any pre-built solutions? Life can be
made easier with tools such as content management systems (e.g.

Page of 434 650

WordPress) and scripts, so determine what you need before you
start coding.

5 Do you know what the competition offers? Your rivals are often
the best source of ideas, and knowing what they offer can help
you meet visitors’ expectations.

6 Have you set appropriate deadlines? Setting realistic deadlines
and tracking your progress towards those deadlines is always
important.

7 Will you need to factor in additional costs? Websites are
relatively inexpensive, and you can build a good one using free
software, but still, you must be on top of any expenses you might
incur.

8 Do you have the necessary skills? Some websites are more
complex than others; consider which technologies you will need
to work with and whether your knowledge of them is current.

9 Have you thought about marketing? A website without visitors is
useless. Look into your options for social networking, SEO,
advertising and more.

10 Will the website actually be useful (or even necessary)? There is
no point wasting your energy on a project that will have no value
for end users, so start by weeding out bad ideas.

11 Is a target audience mapped out? Knowing what kind of people
you hope will visit the website will help you not only write
appropriate content but design effectively, too.

12 Do you have a checklist or criteria? Even a set of basic criteria to
maintain quality control or a checklist for larger projects would
help.

13 Can your host cope with the demand? Getting the right type of
hosting is important; there’s no point in having shared hosting if
you’re going to be streaming gigabyte-heavy video.

14 Have you got the media? Some websites require video, audio
and special file types such as PDF documents. Accounting for
assets early on lessens the risk of launch delays.

Page of 435 650

15 What features do you hope to include? Perhaps you need to
accept payment, or maybe you want a photo gallery. Whatever
you need, plan ahead prior to designing the layout.

15 Questions for Code-Authoring
Next up are questions to ask regarding writing code. If you design or
develop websites, you’ll find yourself working with HTML, CSS, and
JavaScript. Every language has a range of best practices and
guidelines to follow, which is great if you want to standardize your
end-product. However, there are a lot of other things to consider
besides being standards-compliant.

The impact of source code on the effectiveness of your content is
often overlooked yet very real.

16 Does the code validate? While validation isn’t a complete
testament to code quality, it does help to make sure that your
code follows recommended standards and can show you errors in
your markup, CSS, and JavaScript.

17 Have you considered using CSS3 and HTML5? Though many
users still don’t use browsers that have CSS3/HTML5 support, if
implemented with progressive enhancement in mind, taking
advantage of these future W3C recommended standards gives
your products added value and improves the craftsmanship of
your web designs.

Page of 436 650

18 How semantic is the code? Using the right tag for the job is
essential, and search engines love semantic code. Use <p> for
paragraphs, for listed items that have no ranking, for
items that have a sequential relationship, <a> for hyperlinks and
<button> for clickable UI components that perform an action/user
task.

19 Are you taking advantage of optional files and site add-ons?
Whether in the form of using the Sitemaps XML protocol or
including a favicon, these optional files can enhance your website.
See five files that can improve your website.

20 Do you need an RSS feed? If your website is content-heavy and
is updated frequently (e.g. a blog or news site), having an RSS feed
will be a necessary site feature for keeping your users up-to-date
with fresh content. If you don’t use a CMS with this feature built-in,
check out SimplePie, a PHP class for building your own RSS feed.

21 Will the code degrade gracefully? Graceful degradation (also
known as fault-tolerance) — the notion that a system (in this case, a
website) will still function under sub-optimal situations — is
essential for flexible and web accessible site builds. Learn how to
pragmatically apply graceful degradation when using CSS3.

22 Have you considered SEO? While search engine optimization
should not dictate your design decisions, it wouldn’t hurt to
consider how your website could be more visible in search engine
results. Read some SEO tips to remember when building your site
and ways to improve the SEO of your web designs.

23 Do you provide a printer-friendly style sheet? Designing a print
CSS file is worth the time investment as many users still do print
out web pages.

24 Is any of your code deprecated or non-standard? Using "dead
code" such as the tag that was deprecated in W3C HTML 4
specifications as well as non-standard code such as the <blink> tag
is frowned upon and won’t allow your work to validate against
W3C web standards recommendations. Double-check that you’re

Page of 437 650

not using any by taking advantage of free validation tools such as
the W3C Markup Validation Service.

25 Do you need to use conditional comments? IE6 isn’t going to
go away completely, and if your project requires you to support IE
and to use browser-specific code, use conditional comments to
serve IE-specific stylesheets instead of using hacks. This does two
things: It gives you the ability to get your code to validate under
W3C standards, and when you decide to stop using browser-
specific code, you only need to remove the conditional comments
in your site template. Leveraging JavaScript techniques for fixing
IE6 and projects such as HTML5 Boilerplate to solve deprecated-
browser rendering issues could be another option, but you’ll be
stuck in scenarios where the user uses an old browser with
JavaScript disabled — a scenario that is not as uncommon as you
might think.

26 Are structure (HTML), presentation (CSS), and behavior
(JavaScript) separated? This is important not only because it’s best
practice, but also leads to more manageable and maintainable
code.

27 Is your site navigation laid out in a practical way? The navigation
menu is the most important part of your website. Getting it right is
an integral part of an effective site information architecture.

28 Have you checked for unnecessary HTML elements and
redundant CSS style rules? Code bloats easily, so strip away any
non-essential and repeated bits of code for more maintainable
and leaner (and thus, higher performance) website builds. For
HTML/CSS optimizing purposes, check out HTML Tidy and
CSSTidy.

29 Is the code organized and maintainable? Put care and attention
into your code. Lay it out so that it’s easy to read, update and
manage.

30 Would a framework enhance the site? These days, open source
Ajax/web development frameworks such as jQuery and MooTools
can speed up code-authoring and ensure fewer headaches due to

Page of 438 650

cross-browser issues. If you suspect these frameworks might help,
why not investigate and learn about them?

15 Questions for Web Designing
The process of creating a layout is full of questions related to color,
typography and even distinctiveness. While your project
management style may be superb and your coding technique
beyond measure, design comes with its own set of questions. Web
design calls for endless decisions, and that’s what these following
questions are supposed to help you resolve.

Using a wireframing tool like Balsamiq Mockups ensures a solid layout
foundation.

31 Have you optimized your media? Images, videos and audio
take up more bandwidth and space than anything else. Consider
compressing and optimizing them with tools such as Smush.it.

32 Is the user interface overcrowded? If there’s one thing no one
likes, it’s a stuffy and bloated design. Determine whether
reductionism can help you design better websites.

33 Is the design distinctive and unique? With site templates in
abundance, having a layout that’s fresh and eye-catching is a must.
Breaking the mould may improve your brand’s identity.

34 When should I redesign? Are you able to produce something
totally different or enhance what you have?

Page of 439 650

35 Does the layout make sense? Whether you pick one column or
three, a lot of scrolling or none, decisions on your pages’ visual
hierarchy will directly affect readability.

36 Do the colors give off the right feeling? Color is closely linked
to emotion; a palette can be the difference between a fun-looking
website and professional-looking one.

37 What typography is best? As with color, typography affects the
feel of the website. Build your font stacks wisely and attentively
and take time to craft a masterful typography design.

38 How visible are links? Links have no purpose if they cannot be
seen. Make sure you take the time to design your hyperlinks well.

39 Are you using enough white space? Too many websites
squeeze everything too close together. If you add some breathing
room, the result could be improved readability.

40 Have you considered content on-demand? With the rise of
Ajax and fast content switching techniques, packing more data
onto the page is easy. Consider doing this with very long web
pages.

41 Is the design aesthetically pleasing? While this process is
subjective, it’s still a good idea to get feedback from your friends,
co-workers and perhaps a stranger or two to determine whether
your work is visually appealing or not.

42 Is the content readable? Nothing is more important than
content; if it’s legible and coherent, then your site users will be
happy.

43 Does the design scale at various resolutions? Displays are
getting bigger (bigger desktop monitors) and smaller (mobile
devices) at the same time; make sure your work renders in all web-
enabled devices. For mobile devices, take advantage of free tools
for testing designs in mobile devices.

44 Are important site features emphasized? Some things are more
important than others; consider the various ways that relevant
content can be highlighted so that visitors can easily find it.

Page of 440 650

45 Does the website feel complete? This is probably among the
most important yet difficult questions to answer. Recognizing
when it’s ready requires a lot of care and thought.

15 Questions for the User Experience
The user experience is perhaps the most important factor for
determining the success of a website. Here are questions related to
UX, usability, and accessibility.

Accessibility, usability and compatibility: few things are more
important. Silverback is a popular usability testing app.

46 Does the website work equally well across different browsers?
There are plenty of browsers out there — make sure your website
works well in the major ones. You can use a web service like
Browsershots to preview your work in various operating systems
and web browsers.

47 Is the website mobile-friendly? While desktop browsers are
pretty straightforward (with the exception of IE), mobile devices
require an extra bit of care and attention; read about best practices
for the mobile web design.

48 Have you tested the website in a screen reader? Unfortunately,
even with free screen readers out there like Fire Vox, a screen-
reading add-on for Firefox, few web designers consider testing

Page of 441 650

their designs for screen-reader web accessibility. You might want
to.

49 What happens when JavaScript is turned off? Not every
experience is the same and we can’t control the visitor’s browsing
environment, so try to make sure your website gracefully
degrades when JS is turned off.

50 Do you offer alternatives to Flash content? Following on the
previous point, if your website is particularly Flash-dependent, you
might want to make sure that your use of Flash is accessible.

51 Did you remember alt attributes? One of the simplest
accessibility aids to implement is using descriptive and useful alt
attribute for images.

52 Have you evaluated your website against Web Content
Accessibility Guidelines? Complying with web accessibility best
practices is important for users who have disabilities that affect
their capability to browse the web. Fulfilling the recommendations
in the W3C Web Content Accessibility Guidelines (WCAG) is the
perfect place to start.

53 Has the website been tested by other people? Usability testing
is quite easy and inexpensive to carry out nowadays. Performing
tests could give you ideas for improvements. Check out web
services such as Concept Feedback and Feedback Army.

54 Do your URLs make sense? URLs that are easy to read will give
potential visitors the chance to predict where they’re headed (and
is good for SEO to boot). Using pretty URLs (example.com/about-
us) instead of system URLs (example.com/?p=655) can enhance
the experience of visitors. If you’re using a content management
system or a custom-built app, learn about rewrite engines.

55 How quickly does your site load? Speed is an important factor
of usability. Consider how your website will affect visitors,
particularly ones on slow connections.

Page of 442 650

56 Is the search functionality easy to use? Most websites need a
search box to help visitors locate the information they need.
Ensure that yours is easy to use and that the results are accurate.

57 Will there be any potentially obnoxious behavior? Whether it’s
pop-ups and modal windows that won’t close, or scripts that
cripple right-clicking, make sure your site doesn’t have behavior
that annoys users.

58 Are your web forms usable? If you’re asking for too much
information or your forms are too hard to complete, people will
enter fake details or simply refuse to submit the data.

59 Can the site owner be contacted without difficulty? While you
might get spammed in the process, allowing visitors to send you
an email or to initiate a Skype call could be a great way to connect
with them.

60 Have you checked for broken links? Root out dead links in
every nook and cranny. Tools such as Xenu’s Link Sleuth can
automate the process; learn how to discover broken links in your
website.

Conclusion
As we learn and grow, our competency increases, which changes our
perspective and workflow. Designers and developers who regularly
question their methods and ideas are usually the ones who get the
job done right and are the ones who consistently improve their
processes and products.

Sources:

• http://drpete.co/pdf/checklist.pdf

• https://basecamp.com/

• http://alistapart.com/article/
understandingprogressiveenhancement

• https://www.sitemaps.org/protocol.html

• http://simplepie.org/

Page of 443 650

http://drpete.co/pdf/checklist.pdf
https://basecamp.com/
http://alistapart.com/article/understandingprogressiveenhancement
http://alistapart.com/article/understandingprogressiveenhancement
https://www.sitemaps.org/protocol.html
http://simplepie.org/

• https://en.wikipedia.org/wiki/Fault_tolerance

• http://jonraasch.com/blog/graceful-degradation-with-css3

• https://validator.w3.org/

• https://www.quirksmode.org/css/condcom.html

• https://html5boilerplate.com/

• http://www.html-tidy.org/

• http://csstidy.sourceforge.net/

• https://balsamiq.com/products/

• http://www.imgopt.com/

• https://silverbackapp.com/

• http://browsershots.org/

• http://firevox.clcworld.net/

• https://www.w3.org/TR/WCAG20/

• https://en.wikipedia.org/wiki/Rewrite_engine

• https://www.nngroup.com/articles/the-need-for-speed/

• http://home.snafu.de/tilman/xenulink.html

Page of 444 650

https://en.wikipedia.org/wiki/Fault_tolerance
http://jonraasch.com/blog/graceful-degradation-with-css3
https://validator.w3.org/
https://www.quirksmode.org/css/condcom.html
https://html5boilerplate.com/
http://www.html-tidy.org/
http://csstidy.sourceforge.net/
https://balsamiq.com/products/
http://www.imgopt.com/
https://silverbackapp.com/
http://browsershots.org/
http://firevox.clcworld.net/
https://www.w3.org/TR/WCAG20/
https://en.wikipedia.org/wiki/Rewrite_engine
https://www.nngroup.com/articles/the-need-for-speed/
http://home.snafu.de/tilman/xenulink.html

Situational Design for the Web
During the browser wars, interesting problems presented themselves
to the web design community. Many web professionals resorted to
drastic measures and built separate websites for IE and Netscape —
and later we had wireless markup language (WML) for mobile
phones. This was because of inconsistent rendering and poorly
implemented standards, and it was a means of avoiding the ugly
hacking that was otherwise necessary.

This practice has evolved over the years (take print-friendly pages, for
example), but the modern web almost shuns the practice entirely.

Web standards are being developed and adopted at a rapid pace
(especially as older browsers retire) but the dawn of a new device-
friendly era in which mobile phones, cars, televisions and household
appliances can access the web has resulted in an uncontrollable
situation.

As a web designer, I’m always on the lookout for good solutions, and
as strange as it may sound, the case for having separate, situational
websites to deal with different devices is getting stronger by the day.

Here’s why.

Problems with Singular Solutions
The initial problem that forced us to adopt a one-size-fits-all model
was discrimination. During the browser wars, our main complaint was
that deliberate actions by browser makers to gain dominance ended
up hurting web standards. Even the humble print-only page was an
act of "discrimination"; it drew users away from the standard "Print"
button in browsers.

Every case of separation led to some kind of web design anxiety,
which made life extra hard.

Page of 445 650

We no longer have two devices and five renderers; now it's 100+
devices and 20+ renderers!

A single website for every situation: what a wonderful concept. Such
a website would be easier to maintain (unless the other designs are
automatically generated), and they would cut down on domain
confusion by doing away with forced URL redirects and not
burdening users with having to remember the top-level domain (TLD)
for their specific version.

If browsers and devices rendered things equally well and treated our
wonderful layouts as they were intended, we could continue to rely
on one-for-all websites.

But things are no longer that simple.

Years ago, we worried only about screen resolutions, web-safe
typography and whether browsers could handle our code.

Now, we deal with a range of unit measurements that boggle the
mind. How big is the screen? Does it support zooming? What input
hardware is available? How fast can it render? Do users have
bandwidth limits? How can one layout be fluid enough to deal with it
all?

Page of 446 650

Don't confuse the iPhone and the iPad; there are two different screen
sizes to design for!

With single page websites, it isn’t so much about the visuals that our
users have to settle for (though usability is important); it’s about the
measure of the background processes involved, and about making
our pages as agile as possible for a platform’s needs (while taking
advantage of its hardware).

We talk a lot about optimizing our web designs for usability, user
experience, and front-end performance, so (putting aside time
constraints for the moment) why would we give users a "second-
hand" layout — built for one platform and then hacked into a new
shape for another?

We Need Dynamic Designs
The Wireless Markup Language (WML) is a depreciated language, but
I have to admit that web designers could learn a lot from the short-

Page of 447 650

lived benefits that it brought to the table. It forced us to create a
separate layout and structure for mobile phones — which were the
only alternative devices, apart from the unpopular WebTV product
that MSN put out in the ’90s.

The new layouts brought new advantages. Most pages were small
and agile, and they were guaranteed to work on mobile devices. Plus,
we weren’t left with countless "what if" questions.

Many designers recognize the appeal of being platform-specific, so
TLD conventions for them now exist.

Standards have evolved, naturally, but the need for dynamic,
situational websites that cater to certain device types is evident.
Bandwidth and speed are major issues on mobile platforms, and
support for technologies that address those issues could change the
game. Too many designers look at the mobile web simply as "the
desktop, but smaller" — and that is a fatal mistake.

Your visitors could be using one of a number of connection types that
affect speed.

Page of 448 650

The problems we face now result from the mysterious issue of device
diversity. Following the principles of progressive enhancement would
curtail the quirks of designing for certain devices, but they wouldn’t
help with the redundancy of adapting desktop websites to a mobile
platform.

It’s not just a matter of having separate websites for each device; it’s
about creating one version for all web-enabled platforms and using
the available tools to enhance the experience on each.

As it currently stands, the major platforms include:

• Desktops (including notebooks, netbooks and traditional
computers)

• Mobile devices (not just mobile phones, but tablets and other
touch devices)

• Televisions (both web-enabled TVs and game consoles on large
displays)

Appliances (don’t forget those quirky devices that don’t fit in other
categories, like refrigerators)

The number of people using each of these platforms is increasing,
and although the numbers are difficult to crunch, it stands to reason
that we should design only as our audience calls for it.

If you’re building a mobile website, why not tear it away from the
desktop and gain the benefit of a clean surface to work with — and,
more importantly, the opportunity to adapt your content to the
platform? If your visitors want the mobile experience, they can
choose it; leave the full desktop website untarnished and accessible
to others.

Page of 449 650

Allowing users to revert to the desktop experience is important. Don’t
forget it!

The Benefits of Separating Structure
Apart from offering two ways to browse, what are the main reasons
to build separate websites rather than make a desktop design
"mobile-friendly"?

The primary benefit is greater compatibility. With a desktop
"conversion," one relies entirely on browser detection to ensure that
the right design is being served. Instead, make a generic mobile
layout that can work on all devices of that type but that can still be
customized for specific platforms. There are plenty of tools for testing
your mobile layout on various devices.

Let me justify separate, situational web designs:

• Even unknown mobile devices will be able to access the mobile
experience instead of the desktop one.

• Maintaining "themes" for particular devices (i.e. styling the
mobile structure) is easier.

• Users can quickly and easily switch between designs, with no
extra scripting.

Page of 450 650

• You can identify key markets (phones, TVs, etc.) and design
unique layouts for them.

• Screen real estate will not be wasted on clutter that forces users
to zoom around.

A separate website could have a standardized mobile theme and be
further enhanced with feature detection, perhaps for iOS or Android.
Of course, this is also possible with a normal layout. The unfortunate
side effect of detection is that website overhead increases. Rather
than designing for smart phones and focusing on a couple of models
for custom styling, we instead have to account for the hundreds of
thousands of variations. It’s a scary thought.

Remember that old devices deserve as much respect as advanced
platforms.

The benefits of separate website designs can also be seen in code. By
offering options to your visitors, you’ll avoid the need for feature
detection (unless you want to auto-forward them). Keep your
desktop website clear of mobile code and the mobile website free of
desktop code; this is crucial. It may not seem significant, but
redundancy on the mobile web is a serious issue that desktop
websites can’t solve alone.

Here are some more reasons:

• Users only have to download the code that is useful for their
device type.

Page of 451 650

• The overhead for detection scripts is greatly reduced to just
special cases (if any).

• You can craft an alternative experience that takes advantage of
hardware requirements.

• Printers have browser support, but device capabilities require
feature detection.

• You save time with less CSS and JavaScript or having an
alternative WML structure.

Content Design Optimization
Of course, the biggest justification for separate web designs — and it
goes against the current trend — is content, and the opportunity to
tailor it to individual platforms.

If your website is for mobile phones, you know that screen sizes will
be small and, as such, images and video should be scaled down to
match (which will save loads on bandwidth).

Content can be reduced in density, too (to reduce heavy scrolling),
and longer documents can be broken down and served in more
digestible chunks.

Scrolling a mile of content is no fun, so consider breaking it into small
clusters.

Page of 452 650

If you still need reasons, here are a few more:

• Lengthy content may not adapt well from one layout to another.

• You can treat media-capable platforms different to text-only
devices.

• Images and media can be scaled up or down to match screen
size (saving bandwidth).

• Connectivity issues can be addressed (such as by displaying
content on demand on one-page websites).

• You can serve relevant content, discard the rest and reduce
costly interactions more easily.

The Web’s Wild West
Providing a device-oriented experience ensures that dissonance with
interfaces is as low as possible. Still, there will be occasions when a
separate website is not needed. Whatever your decision about
building separate websites, your visitors’ needs should be the guiding
factor.

Complex websites with multiple columns, lengthy scrolling, large file
sizes and a lot of images and media are ideal for separate websites in
most cases.

A simply designed or single-page website might not benefit much
from dynamic, situational behavior. Often, you’ll want to drain away
excess material, to be left with a design that merely requires some
optimization. If you’re producing something complex, like a web app
or an elegant use-every-inch-of-the-screen layout, that’s obviously
another matter; but simplicity is diversity’s best friend.

Page of 453 650

Automated tools like Mobify help, but they don’t optimize content —
which is 90% of the website.

Situational web design isn’t just about seeing the web in a new light:
it’s about recognizing that the diversity of ways of interacting with the
web need to be addressed. Designers put so much effort into
building desktop websites that it becomes second nature to think that
variations should match the original design as much as possible. In the
’90s, we realized that serving the exact same layout to two browsers
(and have it be optimal and usable) isn’t possible; the same is now
true with the device revolution.

Examine your website and how it interacts with different devices.
Perhaps you could reduce data usage by employing device-oriented
graphics (based on screen size). Maybe you could serve less content
per page for small screens, or more content for large one. Whatever
you do, design for each platform independently. Design around the
content in order to give users on a particular device the opportunity
to enjoy it.

There is no longer just one web to design for; let’s make the best of it!

Page of 454 650

Sources:

• https://en.wikipedia.org/wiki/Wireless_Markup_Language

• https://en.wikipedia.org/wiki/MSN_TV#The_WebTV_set-
top_box

• https://www.mobify.com/

Page of 455 650

https://en.wikipedia.org/wiki/Wireless_Markup_Language
https://en.wikipedia.org/wiki/MSN_TV#The_WebTV_set-top_box
https://en.wikipedia.org/wiki/MSN_TV#The_WebTV_set-top_box
https://www.mobify.com/

The Importance of Historiography on
the Web
The topic of history immediately draws to mind a dusty classroom in
which professors tell stories of war, royalty and civilizations lost to the
sands of time.

While traditional history is expressed as a vibrant tapestry of events,
dates, people and places, we often forget that the web has its own
rich history and a legacy to leave future generations that needs both
preservation and recognition.

By examining current problems in how we preserve our digital
heritage and through a significant change in our attitude towards web
content, we can hope to leave future Internet users with something
tangible and useful.

History doesn’t exist separate from our actions; it is built up over time
in what we write and record, allowing those in the future to analyze
and improve upon our work. Addressing our current perspective of
web content as "disposable data" is critical at this time.

Evolution of Knowledge-Sharing
The passing on and recording of knowledge is a time-honored
tradition. This practice has spanned generations, ranging from
mankind’s early cave paintings to the industrious storage of
information, such as can be found in the Library of Alexandria in
Egypt.

Yet, while so much emphasis is placed on preserving our rich analog
history, our digital past seems to be rapidly disappearing around us;
and like the great Egyptian library that was lost to fire, we are now left
with large gaps in our understanding of how much of our present
web culture came to be.

Page of 456 650

Creative Commons, freeing content from the claws of copyright and
loss.

The average website exists in a single form for a period of time
before being reinvented when it goes through a website redesign,
but if we value published content, then the need to preserve it should
be immeasurable.

Today, many argue that if it does not appear in search engines or if
there’s no clear link to it to the web, then it no longer exists. By law,
the famous Library of Alexandra preserved any scroll it acquired, yet
with the web, we throw out useful old content if visitor numbers are
not high enough or because certain copyright laws prohibit us from
preserving knowledge soon to be lost.

Digital Curators and Librarians
It would be unfair not to mention some present-day schemes to
protect valuable web content from being discarded, such as the
Internet Archive and, to a point, Wikipedia and Google.

However, if we look to Geocities being shut down, we can see the
damage that a web service’s disappearance can cause to our web
culture. With the bookmarking service Delicious being threatened into
extinction, we might see valuable bookmarks of its users lost as well.

The knowledge and imprint of our history serves to teach others
about the development of the web, and we must accept our role as
curators and librarians of this modern digital world.

Page of 457 650

The Internet Archive is like a museum of old websites, but it hasn’t
saved everything.

As a web professional, seeing web content disappear makes me sad,
even if its relevancy and accuracy changes over time.

As we produce more and more content, finding true treasures on the
web is becoming increasingly difficult. While the average blog may
only have fragments of gold, it still reflects the diverse world we
inhabit. The purpose of owning a website is to increase visibility, but
so many still leave their creations unattended, creating dead, broken
links, orphan pages and poor navigation and archival systems.

We should do more to improve our websites and showcase the good
content in our archives, even if only to revisit an article or subject from
a present-day perspective.

The Danger of Disposable Data
We have bred a society in which information and opinion aren’t
valued over the long term. As a result, we are left with no
infrastructure to ensure the sustainability of that content.

For example, little exists from websites created in the 1990s, and what
can be found is often disjointed and scattered; imagine the state of
our web content 20 years from now!

Page of 458 650

Quite paradoxically, we value our own work so highly, often
spending hours upon hours creating beautiful websites and amazing
content, and yet we forget them after their 15 minutes of fame.

The BBC archives old information, but even that’s not safe forever.

To wake up from this mentality of waste, we have to be critical in our
evaluation of modern web history. We must recognize that as the
web changes, formats will shift and media consumption will alter, and
we will need to maintain some level of control over the effects of
popular trends.

Missing Links and Lost Empires
As a web professional or website owner, you can do plenty to reduce
the disappearance of your content on your website. Certain practices
have profound benefits and could give users additional reasons to
return to your website. If we can expose a website’s history, we
provide a more enriching experience full of quality content.

The first thing to do in promoting a healthy archive is to weed out the
dead links that accumulate over time. This waste is easy to spot with
tools like Xenu Link Sleuth (freeware), which scans every piece of
content on a website.

Chronicling a website with thousands of pages can be quite complex,
but maintaining an effective website navigation scheme and an up-to-
date site map is central to good information architecture.

Page of 459 650

Automated tools can poke around your website and report dead
links.

Next, we can ensure the survival of our content by connecting every
page to the rest of the website and listing them all on a site map (as
well as creating a robot-readable Sitemaps XML file). Disconnected
pages — pages that have no remaining active links to them — are
orphans. Orphan pages rarely index well, which negatively impacts
the findability of your content and its usefulness to future generations.

Site maps can be easily produced using an app, but you might want
to code one yourself.

If you’re the kind of person who shudders at that thought of their
earlier work, consider making active revisions of your old content

Page of 460 650

visible on your website; do, however, preserve the original using
some form of version control system.

If you redesign your website regularly and change content often,
keep older pages available for nostalgic users or those interested in
seeing previous versions. Exposing revisions (like a version history file)
can also be very beneficial in tracking the progress and evolution of
websites.

Some people allow users to revisit previous versions of their website’s
layout as a way to showcase their evolving talent.

Donating published content is another practice to consider. While
republishing old material ad infinitum is not sensible (because it
would create duplicate content for search engines to index and
perhaps be regarded as spam), there may come a time when you
close down, change direction or overhaul your website.

In such cases, consider donating your posts to other websites (think
of it as content acquisition); you could make a bit of money from it
and free up useful data.

Page of 461 650

Certain interest pieces might be useful for Wikipedia or could be
donated elsewhere.

While donating outdated or useless content could help you clean up
your web presence, the websites or services that receive this old
material might not be able to manage it effectively, especially if it
comes in at an unsustainable rate; this could, in turn, lead to dead
image links, stale content and an increase in 404 errors. Instead, try to
use your archived material in other ways, perhaps by promoting
earlier articles, as a retrospective of sorts.

Page of 462 650

This is the first article published on Six Revisions, and yet it could still
help a number of readers today.

Finally, the most important precaution for ensuring the survival of your
content is to back it up. To this day, many websites still have no
substantial process for archiving and backing up their content. What
happens if your website is hacked? What if your computer crashes? If
the history of computing has shown us anything, it’s that data
increasingly disappears as a result of both computer failure and a
website or web technology aging.

Historiography for the People
The web is ever-changing, and its history is being erased, written over
and lost in poorly maintained archives.

High-quality content — even an individual’s personal reflection on the
world on his or her blog — never loses value. Of course, drowning
out the spam and fluff helps, but if we value a healthy digital
ecosystem, then we will focus on producing things that contribute to
our evolving worldwide virtual library.

The content we produce will give future generations a fascinating
look at how the web has evolved over time and how web
professionals and ordinary folks have carried out their daily tasks.

We should not build websites solely for the here and now, forgetting
the mistakes and successes of those who have come before us. By

Page of 463 650

preserving the past and documenting the development of the web,
we are immortalizing ourselves, ensuring that we don’t become yet
another people who simply fade into oblivion.

Sources:

• https://archive.org/

• https://mashable.com/2009/04/23/geocities-shutdown/
#I5iWgzGu6EqM

• https://techcrunch.com/2010/12/16/is-yahoo-shutting-down-del-
icio-us/

• https://en.wikipedia.org/wiki/Main_Page

Page of 464 650

https://archive.org/
https://mashable.com/2009/04/23/geocities-shutdown/#I5iWgzGu6EqM
https://mashable.com/2009/04/23/geocities-shutdown/#I5iWgzGu6EqM
https://techcrunch.com/2010/12/16/is-yahoo-shutting-down-del-icio-us/
https://techcrunch.com/2010/12/16/is-yahoo-shutting-down-del-icio-us/
https://en.wikipedia.org/wiki/Main_Page

Why IE9 is a Web Designer’s
Nightmare
Web professionals have been getting pretty excited lately, and it’s no
surprise why. The latest spawn of Microsoft’s browser, Internet
Explorer 9, has just been released. Many people have been talking
about the changes and whether the latest version is a solid step
forward, or if it’s too little, too late.

In a previous article, Jacob Gube (this site’s founder) had a more
positive view of IE9. I’m here to play devil’s advocate and present the
other side of the coin.

My Rocky Relationship with IE9
After waking up one morning and checking out my Twitter feed, I
spotted a tweet that got me pretty excited: The first release candidate
for IE9 had launched!

Now, among web designers, I am probably one of the most skeptical
of IE — we’ll skip the IE6 jokes for now — but this time around, I had a
great beta experience and saw so much good work. IE9 was
different.

I quickly downloaded it and began the installation process. That went
well. I then performed the obligatory Microsoft reboot — it’s 2011 and
the software still needs a computer restart, but whatever, I’ll live —
and then I opened up the browser.

So far, things were turning out better than I’d hoped. It was at this
early point, though, that my first negative experience with IE9
occurred. I visited my own website to see how it looked, and what I
saw left me with a facial expression that only this image can
accurately depict:

Page of 465 650

If my webcam had been turned on, this is the expression you would
have seen.

My website’s perfectly formed layout was broken. Not only was it
rendering badly, but the rendering defects were so great that no
amount of IE conditional comments could resolve them. (Dear IE9,
gray hair from stress on a 27-year-old is not cool.)

At this point, I did what many in my situation would do: I screamed
"Nnnoooooooo!!" so loudly that a dog in the street barked in
response.

Luckily, I was able to patch the issue using the XUA Meta hack (so
much for semantics and well-formed markup).

Perhaps the bugs will be ironed out before the full release. But I’m a
realist, and I didn’t feel that lucky.

Internet Explorer Is Improving
Before anyone dives down to the comments and retorts by pointing
out all of the great new stuff worth defending in IE9, I should state that
Microsoft has done a lot to improve its browser. And truth be told, we
need this update more than any other.

So, before we focus on the issues that have made me an IE9 cynic, it’s
important to note a few good things about it.

Page of 466 650

First, although many would like to forget it, IE has been a pioneer in
what we now refer to as modern web standards. They were
innovators. How we see the Web today is a direct result of their early
work.

Granted, Microsoft’s push for change hasn’t always hit the mark, but
without browsers like IE6, we may not have seen such CSS3
properties as the overflow-x and overflow-y properties, web fonts,
Ajax, and the ever-useful conditional comments (our savior in the
development process). New features in version 9 have impressed me,
and they’re worth having.

In addition, I’m particularly pleased with the way Microsoft is
embracing HTML5 and CSS3. While not perfect by any stretch, the fact
that we’re seeing current standards being supported by the browser
shows that Microsoft is making at least some effort to ensure a better
all-around browsing experience. Also, surprisingly, Microsoft’s
transparency during the testing process (letting everyone get the
beta and listening to feedback) is really bringing their browser line
back on the path to success.

Will IE9 Be the New IE6?
The early warning signs were there from the start, and people have
criticized Microsoft’s choice to include HTML5 and CSS3 (both
unfinished specifications), arguing that poor rendering (which does
exist) and future changes could leave the browser in an IE6-like
situation when it gets outdated. The frequent release cycles and
automatic updates (by default) of other browsers will minimize this
problem, but given how slow Internet Explorer has always been with
major versions, it may well become the IE6 of 2020!

Page of 467 650

If Steve Ballmer can’t save us from this, who can?

Moreover, the number of bug reports in the feedback program —
over 5,000 of them — and the IE team’s announcement thanking the
jQuery team for updating their popular JavaScript library to be IE9-
friendly makes me suspect that this will indeed be our bleak future.

Microsoft Connect: approximately 5,300 open reports (and mine is
among them). Oh dear!

Page of 468 650

The notion that coders, designers and service providers should patch
their code for new browsers is scary. If browsers followed the
standards, then bugs wouldn’t be there in the first place.

If the issues are severe enough to need patching before a new
browser version comes out, how bad will things really get?

Recalling the days of hasLayout, these problems seem to be the same
ones we have seen before. Yes, Microsoft has come a long way since
IE6, and yes, it is doing its best to keep the browser up to date. But
remarking on how well it’s doing — and going so far as proclaiming it
is better than the competition when known issues are left for the rest
of us to work around — seems inexcusable.

Marketing Machine
In a quirky letter to Microsoft, Mozilla proclaimed that Microsoft’s
boasting of IE9’s high level of support for standards is inaccurate.
Microsoft has always had an effective marketing strategy with IE with
its substantially biased claims and inaccurate research.

Mozilla posted this to show how inaccurate the claims are about IE.

While marketing doesn’t affect the browser itself, this misleading
treatment of consumers, both past and present, only rubs salt in the
wounds of those who make websites for IE.

Page of 469 650

It’s true that while Microsoft’s new browser appears far from perfect,
no other browser gets it quite right either. All of the other browsers
have their share of flaws and bugs, missing technologies, and
incomplete spec implementations.

However, the problem with Microsoft is partly due to how it portrays
itself and the frustrating way it sometimes goes one step forward, two
steps back.

Is IE9 a Modern Browser?
To see what we’re all in for, we need only examine a blog post by Tim
Sneath of Microsoft, who opines on what makes a modern browser.
The substance of his retort to Mozilla’s open letter is what concerns
me.

The "modern browser" earns points for effort but is rather short on
substance.

First, Sneath proclaims that Mozilla is narrowly defining the "modern
browser." While I agree with him in that Mozilla defines "modern
browser" in its own terms and agendas, if Mozilla had broadened its
definition, Microsoft would still have come off looking even worse.

Below I’ve paired up points that Sneath’s made with my own view of
why the term "modern browser" doesn’t apply to IE9.

Page of 470 650

"Modern browsers are fast. They take full advantage of the
underlying platform to render graphics with the GPU, compile and
execute JavaScript across multiple CPU cores and ensure that web
applications run as close as possible to the same speed as native
applications."

The new version of IE has improved with regard to the interface’s
overall speed and usability, and the rendering speed of IE9 does
clock well against the other browsers. But in terms of the overall
speed of the browser itself (and the intuitiveness of the interface
compared to Chrome and Opera), the differences are still quite
staggering. The loading times of windows and tabs are not favorable,
and regardless of the rendering engine, the interface is not as refined
as the ones in other browsers.

The settings menu is a simple illustration of where IE9’s interface
shows its inconsistencies. For instance, F12 developer tools is about
the worst label I’ve seen in a product; for consistency, it should have
been laid out like the View downloads option.

The RSS and Atom feed notification feature has inexplicably
disappeared from the address bar, so instead, we must use the less
obvious (and hidden by default) command bar. Guess how you turn
the command bar on without Googling it. If it’s hard for you to figure
out, being the tech-savvy individual that you are, imagine how much
more difficult it would be for the average Internet user.

Page of 471 650

Making the "Refresh" and "Stop" commands as separate buttons is
rather redundant; these browser commands are similar to light
switches — you either need to refresh or stop the page from
rendering.

These are just a few rather simple examples in IE9 that makes the
browser’s UI feel unpolished.

"Modern browsers enable rich, immersive experiences that could
hitherto only be delivered through a plug-in or native application.
They can blend video, vector and raster graphics, audio and text
seamlessly without sacrificing performance."

This seems to be pointing to technologies such as Flash and HTML5,
which IE9 does rather well, especially with hardware acceleration and
within the Windows platform where it can outdo even Chrome in CPU
utilization (as shown below).

Page of 472 650

CPU utilization of IE9 versus Chrome in Windows Vista while
SunSpider is running.

"Modern browsers implement features when they are ready,
providing predictable patterns that developers can rely on rather
than suddenly breaking or removing specifications. They don’t
check off support based on a half-completed implementation
written to pass a synthetic test, but validate against a test suite that
confirms interoperability."

Page of 473 650

While keeping older specifications in the rendering engine could be
deemed a useful compatibility feature that some developers can rely
on, I can’t see how maintaining such old standards for the sake of
those who couldn’t be bothered upgrading is the mark of a modern
browser.

The web has changed, as should standards. Continuing to support old
specifications (just like old browsers) will only make compatibility
harder to achieve in the long run.

If old code remains supported, then designers will have little incentive
to innovate (unless they have a need or interest). As it stands, the
industry already has major problems with poor-quality code,
semantics and standards. The prospect of having to cater to an old
generation of code could discourage designers from staying up to
date in their knowledge. While this may not be a problem now, we
could do without this stagnation, especially in proprietary
technologies.

Another point is that — unlike IE8 — IE9 does not support Windows XP
(an operating system that seems to have staying power of its own),
which might keep the benefits of this modern browser out of the
hands of many users (people on Microsoft’s own platform).

As for Sneath’s reference to the test suite that confirms
interoperability, as we have seen throughout IE’s life cycle, the
number of test suite entries has never made a difference to the
rendering stability expected of the browser. So why would it now?

"Modern browsers do adopt standards at an early stage of
readiness so developers can experiment and validate the
specification, but clearly delineate unstable prototypes as such."

Finally, this rather non-committal statement underpins the root of my
cynicism toward IE9 and why web designers will suffer for years to
come. With every new version of Internet Explorer, trying to get users
to upgrade remains a struggle. IE6 is still in use to this day. It’s all well
and good to allow "experimentation," but as these living
specifications gain more adoption by mainstream Internet users,

Page of 474 650

browsers (like IE9) that have intermittent upgrade cycles will
undoubtedly complicate the average web designer’s testing process.

Why It Matters
My criticisms of the browser do not stem from some discontent about
how it’s turned on me; far from it. The browser has improved, and (like
its predecessors) it will help us bring some modern features to a
willing audience.

Is IE9 a modern browser? In my humble opinion, no, simply because
of these issues of life cycles, patchy support and the fact that other
browsers (while not perfect) are making innovative progress.

Web designers should be cynical of any new browser out there, and
Internet Explorer feels like just another catch-up release with the same
issues we’ve seen before. The Web is evolving, as are the tools and
technologies that people use to access it. Only the browsers that
meet such needs will survive.

Is IE9 a good browser? Yes. Is it at the same level as its competitors?
Maybe. Will it remain at this level for its lifespan, and can IE survive to
version 10? I’m not too sure.

For IE9, the future is up for grabs.

As for me, it’s back to business as usual, patching and hacking my
work for another Microsoft browser.

Sources:

• http://fu2k.org/alex/css/cssjunk/ie8/xua/xua-ieEmulateIE7

• http://blogs.msdn.com/b/ie/archive/2011/03/02/jquery-1-5-1-
supports-ie9.aspx

• https://www.zdnet.com/article/mozilla-is-ie9-a-modern-
browser-no/

• https://blogs.msdn.microsoft.com/tims/2011/02/15/a-modern-
browser/

Page of 475 650

http://fu2k.org/alex/css/cssjunk/ie8/xua/xua-ieEmulateIE7
http://blogs.msdn.com/b/ie/archive/2011/03/02/jquery-1-5-1-supports-ie9.aspx
http://blogs.msdn.com/b/ie/archive/2011/03/02/jquery-1-5-1-supports-ie9.aspx
https://www.zdnet.com/article/mozilla-is-ie9-a-modern-browser-no/
https://www.zdnet.com/article/mozilla-is-ie9-a-modern-browser-no/
https://blogs.msdn.microsoft.com/tims/2011/02/15/a-modern-browser/
https://blogs.msdn.microsoft.com/tims/2011/02/15/a-modern-browser/

Progressive Disclosure in User
Interfaces
As designers, we’re always trying to get the most out of our interfaces
and maximize whatever space is made available to us. While many
solutions have been devised over the years, one above all others has
consistently influenced the way visitors access the content they seek.

From simple techniques, such as tooltips and drop-down menus, to
complex single-page websites powered by Ajax, progressive
disclosure has become a formidable force.

This article explores the methodology of progressive disclosure and
its impact on our interface design work.

What Is Progressive Disclosure?
Before we begin, let’s quickly define progressive disclosure. We all
know how damaging clutter can be on usability, so simplifying
interfaces whenever we can makes sense.

Progressive disclosure breaks content into smaller, more digestible
blocks (showing them only when required). HTML elements, for
example, can be hidden from users using the visibility or display
properties in CSS; and scripting for events such as onclick can make
things appear when requested.

By using these content presentation design patterns, we can keep our
interfaces simple and help the user accomplish their tasks with greater
ease.

The Good, Bad and Indifferent
The thing is, users can be quite exacting. Most demand power and
flexibility in the tools they use to accomplish their everyday tasks —
which we provide to them on the web with increasingly complex
methods of delivery — yet users also want that power to be delivered
with simplicity. For instance, many users may want feature-rich apps
without needing to learn anything more than they already know (e.g.,
not having to read an instruction manual).

Page of 476 650

This dual need of complexity and ease of use has to be dealt with,
even though it seems that both things are diametrically opposed.

Progressive disclosure can bring simplicity and feature-richness to a
website.

The idea for progressive disclosure originated as a guideline in
software design. When you click on an item in a menu, a dialog box
usually appears with an array of carefully organized options.
Disclosure happens not just in the dialog becoming visible, but also in
the tabs used to move between categories.

On the web, this technique has come to be relied on because of the
increased demands of users. Web designers will disclose parts of a
page, offering secondary "advanced" options as required.

The benefits of progressive disclosure are these:

• Clean, simpler, more productive interfaces (a godsend for small
displays)

• Important content is prioritized by giving the initial focus to the
most common features

• Less important content is hidden from view so as not to confuse
visitors

• Time is saved if scrolling is reduced and fewer refreshes are
needed

• Fewer errors occur because novice users will take easier, more
manageable steps

Page of 477 650

There are also a few disadvantages to consider:

• Accessibility can be tricky, as in the case of helping screen
readers navigate to page sections

• Page-loading times could increase because of the size of
preloading content

• Client-side technologies like JavaScript (Ajax), CSS3 or Flash
could be disabled by the user (so you must take into account
graceful degradation, which could add to the development
time)

• Too many choices on a navigation path could be confusing

• Indexing by search engines and social networks could be
affected by progressive disclosure methods (such as in the case
of using the display:none; CSS property)

Progressive Disclosure Basics
In designing a site with progressive disclosure in mind, we should
prioritize content into primary or secondary categories.

Primary content appears immediately in the normal flow of the page
(and is highly visible).

Secondary content makes space for itself by doing one of three
things:

• Taking up a part of the browser window when requested (as
we see with content that slides down when requested)

• Replacing visible content in the layout (such as in tabbed
interfaces)

• Overlaying over the primary content (such as in lightboxes/
modal windows)

Page of 478 650

Primary and secondary disclosure methods accomplish their purpose
in different ways.

Progressive Disclosure Design Patterns

Let’s look at some of the ways progressive disclosure shows up in
design work. Because this technique has existed for quite some time,
designers have come up with innovative ways to give content added
depth and substance, while making readability and the learning curve
easier on users.

As with any pattern, every website will have its own requirements,
and you should investigate your options before renovating your
layout.

Primary Progressive Disclosure Methods
Below are some primary disclosure methods.

Hyperlinks

Clicking on a link redirects us to another page (or we scroll to the
target content in the case of fragment links). This might entail losing
the visible content, but it’s the most basic and recognizable way of
navigating content.

Scrolling

Scrolling provides a way of disclosing content in order of priority. It
could be as simple as ensuring that important content appears higher
in the page.

Page of 479 650

CSS Media Queries

Different browsing devices will involve different requirements for
content. A print stylesheet, for example, can remove unnecessary
bulk (such as menus) and avoid wasted ink. Media queries, which was
discussed in the article on responsive web design, can also help with
this disclosure effect by taking away content from plain view for
screen sizes that are smaller (which is the case with netbooks and
smartphones).

Server-side Techniques

Languages such as PHP enable us to make requests to databases,
external files and even other websites. As users request this content,
we can mould an experience around them, rather than just showing
just generic, static content.

Secondary Progressive Disclosure Methods
Below are some secondary disclosure methods.

Mouse and Focus Events

If you’ve made use of the :hover pseudo-class, you’ll know that we
can dynamically style content based on mouse events such as a
mouse hover. A reaction to a hover event could involve displaying a
tooltip, presenting tab content or presenting menus in dropdown
menus.

A focus event (which can be captured using the :focus dynamic
pseudo-class) can also help with progressive disclosure in a similar
manner.

Conditional CSS

Two CSS3 pseudo-classes in particular (:target and :checked) can be
used for progressive disclosure (see a proof-of-concept here).

Ajax

The technique of content-on-demand has seen a significant rise in
popularity through the use of Ajax. Ajax allows us to request new
content based on user decisions and then embed it without needing

Page of 480 650

to refresh the page. However, JavaScript is essential to this process
(which can be problematic for a few users).

Pop-up windows

While many designers do not recommend them, pop-ups are another
form of progressive disclosure. They bring up a new window or new
content through some interaction with the current page. This method
is less cleaner and more invasive than the others.

Modal windows

Progressive disclosure doesn’t always involve swapping content
(either temporarily or long term). You could display a lightbox, a step-
by-step wizard or a dialog box, thereby putting the focus on the
requested content.

Some Things to Keep In Mind
With all of these techniques available to us, we should highlight a few
guidelines for making use of this dynamic form of content
presentation. We’ve already covered the advantages and
disadvantages of this method. Below, you’ll find some practical advice
on how best to eliminate or minimize any impairment of the user
experience.

Keeping it brief, first decide whether a single- or multi-page layout
suits your content (there is no harm in extending long articles and
tutorials over multiple pages).

You’ll want to ensure that the disclosed content gets the full attention
of the user (for example, lightboxes fade the background to reduce
noise).

Limit choice so that users are not overwhelmed with options and
content, but give enough options for them to make an informed
decision.

Never force an option on users.

Page of 481 650

One page or many? The question often faces designers.

As always, compatibility is critical to the process. The method you
adopt should have good solid browser support. If you opt for a
dropdown menu with hover events, then you may need to use
anchor links to ensure that IE6 users see the dropdown menu. If you
use Flash or JavaScript, then make sure alternatives are available for
when they are not, which many web designers forget about.

All basic points, but important nonetheless!

Users can disable scripting and Flash, so ensure that alternatives are
available.

Page of 482 650

To avoid quirks with visibility, label your links so that users know what
action is coming.

Structure and organize your mechanisms logically (having copy
appear on the screen at random isn’t helpful), and use calls to action
to point users to key data (since the material won’t be immediately
visible, users need to know where they can locate the content).

Mystery-meat navigation is like playing guess who, without the fun.

Also, with regard to accessibility, ensure that screen readers can
navigate around disclosed content effectively. Use skip links and label
fragment identifiers clearly (because most screen readers will take this
as an instruction to read part of the page, rather than just repeat
everything).

Embedding skip links in the content and body helps orient screen
reader users.

Page of 483 650

Finally, a note on performance. Technically speaking, progressive
disclosure allows us to keep content hidden or off the page until it’s
required (which reduces page requests and inter-sectional
downloads). But performance can take a hit on single-page layouts if
content is merely hidden until needed by the user, because content
that is not in use is being loaded. While Ajax alleviates this (via
asynchronous requests), it’s still a concern (Ajax can cause high
amounts of persistent network traffic, which can slow down a
website).

Showcase of Progressive Disclosure Examples
Here are a few examples of progressive disclosure in the real-world.

Hyperlinks are straightforward. Users simply click and go to a page
with more content.

Page of 484 650

Traditional scrolling makes content below the fold of the canvas
visible.

Mid-window scrolling can be initiated through iframes and the CSS
overflow property.

Positional scrolling, to push users down the page, can be triggered
with scripting.

Page of 485 650

Print style sheets disclose content, hopefully without the junk!

Media queries can contract and expand content, catering to different
device

Amazon has a database of products and discloses them via server-
side requests.

Page of 486 650

Tooltips disclose content temporarily and can be quite elegant.

Navigation tabs can be used to group and break sections of a page
into categories.

Dropdown menus in web forms can be implemented not only via
lists, but with option inputs.

Page of 487 650

Breakout boxes (slide-out menus) can present a variety of options in a
structured way.

Using the target or checked pseudo-class gives the impression of
multi-page depth.

Page of 488 650

JavaScript methods of altering visibility create effects similar to CSS3
but with the advantage of compatibility.

Panels can be produced by swapping content. (The event can even
be a timed.)

Page of 489 650

Some websites make use of AJAX requests to speed up the
appearance of content.

Pop-up windows aren’t usually welcome by users, but they are a form
of disclosure.

Page of 490 650

Websites can do amazing things with Flash. Just a shame about all the
disadvantages.

Lightbox effects exist all over the web. They hold small individual
items beautifully.

Step-by-step wizards can break up progressively disclosed content
into digestible chunks.

Page of 491 650

Dialog boxes and alert windows provide a basic level of detail for
decision-making.

Summary
There are many different ways to display content on the screen, and
progressive disclosure is one of the most exciting. It increasingly frees
us from having to refresh pages and from navigating to a unique
location just to see something change slightly; it even allows us to
simplify complex aspects of a website.

Enhancing a website is straightforward, but maximizing the available
space can be quite a task. As you produce designs for clients or
yourself, consider the impact that disclosure could have on your
workflow. Perhaps a lengthy web form could be made easier;
perhaps you could use lightboxes to better distinguish useful content
on the page; and there is always the option of just giving more (or
less) choice to users in order to reduce information overload.

However you disclose your wonderful content to visitors, give it some
consideration and be creative!

Sources:

• https://en.wikipedia.org/wiki/Progressive_disclosure

• https://www.webstandards.org/

• https://alistapart.com/article/goingtoprint

• https://2018.ampersandconf.com/

• https://www.amazon.com/books-used-books-textbooks/b/
ref=nav_shopall_bo_t3?ie=UTF8&node=283155

• https://www.daily.co.uk/ 

Page of 492 650

https://en.wikipedia.org/wiki/Progressive_disclosure
https://www.webstandards.org/
https://alistapart.com/article/goingtoprint
https://2018.ampersandconf.com/
https://www.amazon.com/books-used-books-textbooks/b/ref=nav_shopall_bo_t3?ie=UTF8&node=283155
https://www.amazon.com/books-used-books-textbooks/b/ref=nav_shopall_bo_t3?ie=UTF8&node=283155
https://www.daily.co.uk/

Effective Communication Tips for Web
Designers
We lay increasing importance on doing things in the user’s best
interest and meeting their expectations, but we often forget that
content and design is the window to a website’s soul.

Our designs tell visitors something about us and build emotional
bonds to brands through first impressions and reputation.

By taking advantage of communicative design, we can better engage
audiences and more effectively serve user needs.

Reactive Design: Beyond Simple Objects
In digital communication, computers act as a portal between our
input and output devices. How they display websites to users and
how those users respond indicate exactly how communicative our
work really is.

I refer to this process as reactive design. We produce something that
is presented to our users, and users react or respond to that.

Forget email: your website speaks volumes by itself, and as you
progress through the iterations of a website (more on this below),
you’ll find that an improved layout can make all the difference.

Page of 493 650

If you examine a website closely, you’ll see that it attracts the user’s
attention in multiple ways.

Of the many factors in website design, content is a big component. If
we have a block of text that explains the service we offer, that is
communication. If we stream useful audio content to visitors, that is
communication. If we provide interactive training or videos, that is
communication.

Website content is a repository of words, visuals and sounds that
trigger the senses. Don’t let all of that power go to waste.

Tips for Optimizing Content
To help you optimize your content, here are a few tips:

• If applicable, inject some humor into your work; it can liven up
dry boring discussions.

• Break long pieces of content into smaller segments (users can
handle only so much data).

• Beware of sarcasm; it can be quite hard to interpret.

• Images can support text very well, so don’t be afraid to use
them to get a point across.

Page of 494 650

• Don’t condescend; produce technical content at a level that
visitors will understand.

• Always label menus and links; confusion often begins when
choices aren’t defined.

• Personalize what you write; use testimonials to give perspective.

• Be direct and to the point.

• Moderate all forums and blog comments, because spam will
reduce credibility.

• Always keep your content up to date, and sustain the
conversation with users.

• Having one active voice on a website is okay, but user
involvement adds depth.

• Video is a wonderful communication aid, but don’t forget about
accessibility.

• Don’t just tell people what to do: show them with video
(especially good for visual and practical learners).

Inject some fun into your content. Stale, boring material is often
skipped over!

Page of 495 650

Enhancing Visual Communication
Next up, we have the visual design or layout of a page. While more
abstract and open to user interpretation, we do know that design
affects usability.

The very fact that usability plays a part in our layouts says something
about its value and importance. If visitors can learn to use an interface
and find some easier to use of than others, it stands to reason that
design speaks to users through association, recognition and other
types of non-verbal communication; they can see something on the
screen and either know what it does or can find out.

These tips can enhance your website’s visual communication:

• Use color to enhance a website’s appeal; color association can
be quite strong.

• Your logo represents your identity; it should be professional and
high quality.

• Icons are your best friend. They provide recognizable points of
reference.

• If you want your website to look professional, keep visual clutter
to a minimum.

• Your website layout should be compatible with browsers and
devices.

• It takes less than a second for a user to make a judgment; try to
impress rather than shock.

• A design should represent your content and services; don’t use
templates without customizing them.

• Size matters! Large font can draw attention to important bits of
content.

• Don’t be afraid to make the website fun and quirky; just be sure
it’s not too distracting.

• Design patterns put users at ease because users are able to
recall features from memory.

Page of 496 650

• Visibility is central to communication; give users the cues they
need to scroll.

• If you redesign the site, keep the things that work! Users hate
having to relearn skills.

• An attractive layout will get a user’s attention, but make sure
there is substance to maintain it.

• Advertising is a classic form of communication, but too many
websites overdo link placement.

• If your website promotes a physical location, match the designs
so that visitors know what to expect.

A well-structured, clean, organized website gives a feeling of
professionalism.

Enhancing User Interaction
While thinking mainly about content and appearance are fine for the
average static website, we also have the big factor of interactivity,
which many modern designers offer these days in order to create
dynamic, engaging experiences.

Consider JavaScript or PHP: in their own way, they encourage users to
talk to the website through clicks, key presses and data entry.

In fact, users actively speak to websites whenever they fill out their
profiles and user other personalization features. Giving the user

Page of 497 650

attention, recognition and a record of their contributions helps to
create a sense of community.

These tips will help you engage with audiences and harness the
power of interactivity:

• List other content that readers might enjoy; visitors like to
window shop.

• If you have user profiles, have your website address users by
name, to add a sense of personalization.

• Quizzes and games reinforce memory, and they could be
popular tools for content.

• Letting users customize the theme or layout could help them
digest content.

• Every action should have a reaction: if a user enters incorrect
data, inform them immediately.

• Clickable regions should be friendly; make sure they are large
enough to accommodate interaction.

• Take readers on a journey by progressively disclosing content
to them.

• RSS feeds help infrequent visitors stay in touch with a website.

• Exposing old content to users can lengthen their visit; offer
related (but useful) content.

• Web forms that are quick to fill in and non-invasive discourage
users from entering fake data.

• Supplementary content can be distracting; allow users to turn
comments on and off at will.

• Mobile device users interact with websites differently, so adjust
your design to match, perhaps by using responsive web
designs.

• Don’t include widgets (such as clocks) unless your website really
needs them.

Page of 498 650

• Use confirmation dialogs for critical actions, so that users have a
chance to rectify errors.

• For complicated steps, provide a wizard to guide users to their
destination.

Good functionality not only helps users achieve their tasks, but
strengthens the message.

Going Beyond Protocol
While subtle improvements to the message of your website will of
course have a dramatic impact on how engaging and appealing your
content is (especially if the subject is a bit dry), we can’t forget the
other form of communication that our websites facilitates, and that’s
the person-to-person (or direct) method. Skype, instant messaging,
email and even IPTV all present an opportunity to both target an
entire audience and provide something a bit more personal to each
user’s needs. Service providers often fall short of satisfying the latter.

Below are some tips to improve direct communication with users,
whatever the medium:

• Confirm that the user’s message was received (and provide a
time frame for response).

• Always respond promptly; the longer users wait, the less
professional you’ll appear.

Page of 499 650

• Address frequent issues on your website to avoid answering the
same questions.

• If something can be automated (like account closures), do it; it
will usually make things easier for everyone involved.

• Provide live assistance only if you can handle the workload;
don’t make users wait for hours.

• Chatting in person over Skype avoids the back and forth of
email, and it saves time!

• Never ignore users, even if the request seems silly. Just thank
them and note their issue.

• Critics are worth listening to because they want to help you do
better. Just don’t start flame wars with them.

• Transparency is critical to communication; admit your faults, deal
with the issue, and tell users.

• Problems occur, but what matters is how you deal with the
issue, not the problem itself.

• Don’t send users information that doesn’t apply to them or you’ll
be labeled a spammer!

• Give users a simple point of contact; helping them helps you be
a better provider.

• Don’t be afraid to bring the community together; forums allow
users to assist each other.

• Comments add to discussions; they bring out unique
perspectives and useful content.

• Allow users to remain anonymous if they prefer to;
communication should not be mandatory!

Page of 500 650

Offering live support will help you appear more responsive and
attentive.

Golden Rules for Communication
there are some golden rules that can help us maintain the highest
level of communication with users. While there are probably more,
I’ve narrowed them down to the top five best practices:

• Be considerate

• Be prompt

• Be helpful

• Be inclusive

• Be friendly

Improving Communication with Customers and
Clients
Because we are first and foremost designers (rather than consumers),
our communication must cater to two types of individuals: our visitors
(or customers) are the ones whose attention we have to get, while
our clients are the ones whose goals we are serving.

Be under no illusion: the visitors should always come first (because
without them, a website is pointless). But as designers, we have a
duty to those we design for!

Page of 501 650

Visitors and clients are different beasts, and we’re responsible for
connecting them to each other.

Communication between visitors and clients comes with different
variables to consider. When we build a website for a client, our focus
is often on their business objectives (things like cost, scope, etc.).

Ensuring that both the client and visitors end up with something that
encourages the client to retain our services is a bit of a balancing act.
If you want to be a web designer, you must be able to communicate
through your portfolio and other direct methods.

Below are some tips and tricks for working with clients, bosses and
other third parties:

• Tell people who you are; individuals posing as faceless
corporations are impersonal.

• Clients want to know what you know; always state outright what
you provide.

• Price is everything! Most things in life come down to numbers,
and so estimates are important.

• Your portfolio does not need to be big; it just needs to make a
positive impact.

• Avoid jargon because other professionals will see through it.

Page of 502 650

• Maintain confidentiality; it’s not the world’s business to know
how your last meeting went.

• If you can’t convince others to design how you think best, make
a better case.

• Be confident, and be willing to compromise; business is all
about give and take.

• Never be afraid to say "No" to offers that look suspect; you
might save yourself some trouble.

• Opportunities come to those who work hard; do your very best
with every project!

Here are tips for communicating with customers:

• Customers want to reduce the risk of purchase, so offer trials if
possible.

• Money-back guarantees inspire confidence and are an incentive
to purchase.

• Provide frequent customers with offers, discounts and benefits
for using your service.

• If the website is for someone else, make sure the experience
matches user needs.

• Every audience has different needs, so make the layout fit them.

• Visitors want to be gratified; your website should be well-
rounded and purposeful.

• A blog can be useful for keeping users up to date, but only if it’s
updated frequently.

• Version history logs are useful for tracking a service’s evolution;
maintain one online.

• If your service relies on a third-party product, consider the
consequences if that product disappears.

• Downtime is a big issue on the web; do your best to keep the
website going during traffic spikes.

Page of 503 650

Final Reflection
The key to successful communication is to think beyond the items on
the page. Our users want to be engaged and feel that they are
welcome and special.

Our ability to communicate through content, code, visuals,
interactivity and just about anything that can be crammed onto the
page speaks volumes. What does your own website’s content say
about you? How could you better converse with users? It really does
matter!

How a website reacts and interacts with users and caters to their
needs has repercussions. Consider how poor websites abuse users’
trust (through privacy violations), confuse their message (through
poor usability) or simply neglect users (through inadequate
accessibility); the damage will foster a negative attitude toward the
services.

As designers, our job is to make our websites communicate with
attitude, professionalism and (perhaps) a sense of humor. Anything
that keeps a reader’s energy level up is more than welcome.

And as we try to out-do our competitors, we need to realize that what
matters is not always what we say, but the way we say it!

Sources:

• https://www.unlocking.com/

• https://www.liveperson.com/

Page of 504 650

https://www.unlocking.com/
https://www.liveperson.com/

Designing for Different Age Groups
Diversity is one of the things that make the web great, and every
audience has its own needs and requirements. But what happens if
that audience is comprised of a specific age group? Are you
providing something fun and interactive for kids, or are you strictly an
adult-only website (such as one that sells alcohol)?

Age is an influential factor on the web in terms of not only
psychology, but also accessibility, usability, and user interface design.
Many other variables can affect your designs, but we’ll focus on the
difference that age can make in creating a website.

From 0 to 80 in Under 5 Seconds
The differences in how various ages use the web have never been
starker than they are today. Because the web has become so integral
to many people’s lives, a sort of age gap has arisen where different
generations of users have developed different abilities on the web.

While much of our work depends on generalizing about age groups
(and not everyone will fall neatly into one of them), our understanding
is based largely on sensible, logical guesswork.

So, as long as you take the time to know how your target age group
is affected, you should be able to dodge the pitfalls of catering to
fringe users.

Page of 505 650

As usual, research is the order of the day. Study and analytics to the
rescue!

Consider today’s older generation, many of whom are only now
logging on for the first time. There are so many books that teach
senior citizens how computers and the web work; there is almost a
small society of people playing catch-up with this newfangled
invention that we design for daily.

At the other end of the spectrum, we have infants and young children
who will have never known a world without the web and who are
learning the concepts and gaining dexterity online as we speak.

These people are real, and you have to make sure your website
serves their needs.

Why It Matters
Designing for different age groups is important for two reasons. First,
ignoring an entire user base such as the older generation alienates
them from the experience. And let’s face it: all of us will get old, and
we wouldn’t want to be treated like that.

Secondly, younger users will be tomorrow’s designers (or, from your
client’s point of view, tomorrow’s customers). If they stumble upon
your website and have an awful experience, that will likely stick with
them and could shape their perception of the website or service.

Page of 506 650

(However, access to some websites, such as ones related to alcohol
and adult content, should be restricted.)

The four age brackets for web design (although you should expand
them as required).

While this article distinguishes between children, teenagers, adults
and the older folk, it’s worth noting that the difference in computing
ability between a six and a ten year old will be dramatically different,
so you can’t take anything for granted.

The best approach is to define your age bracket (and the younger the
audience, the narrower it should be). With this in mind, let’s look at the
first age group and its implications for your website’s design.

Designing For Early Years
The impact of websites is most heightened with children. When the
web was young, the education system saw computer skills as a
luxury. Times have changed, and the skills have become central to our
society.

Ten years ago, the average 10 year old would have quite limited
computer skills; this is no longer the case. Through early interaction

Page of 507 650

with the web, children as young as five and six (even younger) are
gaining rudimentary experience with devices and websites.

But there is a variable that affects their experience more than
education: physical development.

Very young children may find computers challenging at first. Image
source: creactions

While computers have become ubiquitous in early education,
children’s bodies and brains are still developing. Knowledge that
adults take for granted may be limited. Their motor skills and ability to
use mice and keyboards don’t match ours. Our layouts need to
account for such limitations.

While adults may have some patience for errors, young children have
less (or in many cases, lack the knowledge to overcome them).

Nevertheless, designing for children has a different advantages to
designing for adults. Young children want to be entertained and don’t
necessarily have a direct goal in mind, which gives us the opportunity

Page of 508 650

to engage them through exploration and interaction (rather than just
putting them on the fastest route to a solution).

If the journey is colorful and educational and engaging, then it will
likely be a successful visit.

Children tend to play minesweeper with links, just clicking them to
see what happens. But when they find a route that works for them,
they are more likely than adults to stick with it; a trait referred to as
learned path bias. But they are also (paradoxically more flexible in
their ability to adjust to new environments).

Children’s websites should be educational, entertaining and clutter-
free.

So, how do we make our websites child-friendly? Best practices
include:

• Keeping the UI clean (children get distracted by visual clutter)

• Using iconography (they identify with experiences that are
recognizable)

• Using vivid, exciting colors

• Avoiding integrated advertisements (kids find it harder than us
to distinguish content from ad banners, which quickly lead them
away)

Page of 509 650

• Consider using animation and sound (this is the only age group
for which video seems ideal)

• Relate content to characters they know (like from TV)

• Provide games that educate and attract their attention

• Reinforce their actions through emotion (telling them that they
did a good job encourages repetition)

Designing For Tweens and Teens
As children grow up, motor skills and comprehension become less of
a limiting factor. Older children and teenagers often gain experience
with computers through school homework and recreation (for
example, on social networks), although this doesn’t necessarily mean
they know how computers work fully.

Technology is generally more prevalent with teenagers than with
children; although even very young children now have mobile
phones and laptops, albeit they may monitored by parents. Patience
levels also increase.

Teenagers rely on technology to keep up with friends and for
homework. Image source: duchesssa

Page of 510 650

Teenagers (and tweens) tend to be more resilient to targeted
advertising and are less willing to explore websites (adopting a more
methodical approach: seeking rather than discovering information).
Though still engaged in reading information of interest.

Research indicates that the major difference between this age group
and adults (and children) is that teenagers are more socially focused.
While adults tend to use technology to achieve set goals, teens are
preoccupied with interacting socially, being heard and partaking in
group activities (such as in online forums and social networks). This
gives designers an opportunity to engage with this audience directly.

While not all teens are the same (and despite some adults believing
they are an entirely different species), design choices have more of a
chance of affecting a much greater portion of this user base. Consider
how these socially inclined users can contribute to your website and
how they might spend their free time using your service and
promoting it to their friends. Also, think about how open they might
be to new experiences, not being so tied to learned behavior.

Following popular culture is key to attracting teens.

Page of 511 650

Making a website teenager-friendly means:

• Keeping the UI clean (a factor common to all ages)

• Favoring graphical content to textual content (teens tend to
read less online)

• Using animation and sound (moderately, though — not as much
as for young children)

• Ensuring that the content isn’t so simplistic that it appears
childish

In addition, research shows that teens have the same learned path
bias as children, are more easily distracted by interactivity, are more
social online, and are more driven by social trends (fashion and peer
interests hold sway in web usage — there is power in numbers).

Designing For Adults of All Ages
Of course, people who have been alive since the web first reached a
critical mass comprise a large proportion of our user base today.
Many designers look to them for usability testing and when assessing
whether their work serves the audience’s needs.

This can be problem, though, with increasingly diverse audiences
needs going unaccounted for.

Adults are seen as the average web user. Image source: rajsun22

Page of 512 650

As with younger and older users, most adults have at least moderate
experience using computers.

But that isn’t to say that all adults are computer literate. While most
adults have computer experience, only those who are very interested
in technology tend to understand how it works. For example, a
Google survey showed that 90% of people didn’t know what a
browser is, despite being able to use one.

Adults tend to be at their peak in dexterity and motor skills.
Accessibility is still an issue, but most adults are at a stage when they
aren’t so dependent on instruction, have little trouble making choices
and don’t need advocates for their needs.

Adults in general are goal-oriented and tend to visit websites with
explicit objectives (relying on search more than discovery), and they
are usually more accustomed to (and forgiving of) quirks in the user
experience.

But this comes at the cost of being less focused on social interaction
and being averse to advertising (they filter out noise while scanning).

Usability and accessibility are critical, but that doesn’t mean the
website can’t be clever!

Tailoring a website to adults is generally straightforward. If it is
accessible and usable by modern standards, then it will likely be
useful to them.

Page of 513 650

Unlike younger users, adults are much less drawn to animation and
sound (favoring text over visuals).

Unlike older users, they put less value on research and study and
more on getting answers as quickly as possible.

Ironically, then, it is more difficult to engage this age group than
others.

Designing for Later Years
Older folks get it the worst with regard to targeted design. While
much research has been done into human behavior and HCI for
children (not to mention the investment to educate children in
computers), the expanding age group of seniors — who are more
familiar with a world without the web than with it — seem to be less
catered to.

Older users tend to be the ignored. Image source: EPA Smart Growth

Seniors tend to experience a decline in dexterity and motor skills,
which affects website usage. Many of them may be using the web for
the first time, and because their developmental years were at a time
when computers and the Internet weren’t part of mainstream society,
they’re less likely to take on the technology as fast as other
generations. In addition, the aging process means a decline in health
(both mental and physical), which can affect online interaction.

Page of 514 650

This isn’t always the css of course, many older individuals are
competent with technology to revel their younger generations. It’s
important to take variation into account with statistics.

Being older does have its advantages, though. Unlike adults, seniors
are often focused on achieving set tasks, while still being open to
explore websites and sometimes having more patience than children
and adults.

In addition, they tend to be more focused on interaction and are
more willing to research, read, learn and involve themselves in
communities.

And having more life experience, they may have an advantage in
solving problems and parsing technical content. Designers will
certainly appreciate having an audience that is more likely to
appreciate the nuances of what they provide.

Some older users can find adaptation to change difficult, so make
sure everything is visible, clutter-free and well labeled.

Page of 515 650

Best practices for designing for elderly users include:

• Making websites highly visible and highly memorable

• Text should be large and easy to read

• Links should be easy to click

• There should be little animation or movement that might be
distracting

• Website navigation should be straightforward

Older users are open to having an emotional connection to a website;
they are more likely to form strong opinions, and they are more
susceptible to the effects of a negative experience.

When designing for this group, avoid putting the onus on them to
correct errors, cut down on confusion as much as possible, and
encourage social interaction through an engaging UI.

Age Matters in Web Design
Whether you are building a website for children, adults or the whole
family, age affects how it will be used and perceived. Young children
are still developing in mind and body, and seniors encounter issues of
their own. Teenagers and adults have particular objectives when
browsing the web and interpret information differently.

Only by looking objectively at who will use your website can you
hope to attract the widest possible audience.

One of the central principles of web design is usability, and while it
would be incorrect to assume that all of your visitors have the same
ideas, goals and perceptions, we still have to generalize to some
extent so that we can make timely decisions.

Keep your website accessible to the silver surfers, meet the criteria for
adults, keep teenagers engaged, and make your work child-friendly.

Each internet user is unique, but several generations of users may
want what you offer.

Sources:

• https://www.loop11.com/  

Page of 516 650

https://www.loop11.com/

Smarter Web Designs: Responsive
and Customizable
The way we design websites has changed profoundly in recent years.
We have more information on how web users interact with user
interfaces, we have developed many testing methods for evaluating
usability, and we now build sites with great emphasis on user-
centered design. In addition, research in the fields of psychology,
sociology and usability has enriched our understanding of our site
visitors.

Yet, while methods of designing for devices, the choice of browsers,
and user demands all have increased, designers still tend to shy away
from providing users with an experience that suits the ideology of
truly responsive design — smart designs that fits the unique personal
traits and preferences of a user.

Intuitiveness: The Double-Edged Sword
If you’ve ever conducted a usability research study, you’ll be well
aware of the issues people face when presented by an out-of-the-
box UI that don’t abide by conventions or trends. The truth is that
knowledge — and more specifically, the ability to recognize common
objects and their function (such as a button or hyperlink) — is the root
of the issue. Knowledge is easy to come by, but it takes time to instill.
Every experience comes with a learning curve.

Page of 517 650

Designing for navigation, links and content is a non-stop juggling act,
as shown at eBay.

On the other hand, an intuitive design also empowers users. The user
feels that they have the ability to understand the environment and
deduce things for themselves. Empowering users is a critical part of
the web designer’s role. We can only hope that users know which
links are clickable and what button to press to submit a web form.

So, here we are in this position: Many users struggle with the usability
of our websites, and we do all we can, generally, to accommodate
everyone’s needs.

Nevertheless — and all too often — little is done to level with
individual users because of the up-front costs of building flexible,
customizable interfaces.

At least, that’s what used to happen.

These days, we invest time and money in building smartphone apps,
we build dedicated websites for portable devices, and some of us
still provide support for Internet Explorer 6.

Yet, when it comes to interaction, we let our standards slide; we don’t
seem to put enough effort into crafting them for the site audience’s
needs.

Page of 518 650

Design Smart, Not Static
If we’re trying to learn what our users want, we should leave
customization in their hands.

There are all sorts of general usability tests, but we need to consider
which users to include, what to improve, how to implement it, and
much more.

To put it simply, users know when something isn’t right about their
experience, and even if they have the time to bother telling you
about it, they don’t always know what they want or how to express it
in a way that would make sense to others.

They know there’s a problem, but they may not know how to solve it.

Visitors idealize. They aren’t trained designers and are liable to request
solutions for what may not be problems in the first place, yet we are
the ones who make the final decisions.

Design is less about fighting fires and more about empowerment; and
smarter web designs are becoming increasingly aware of that.

Usability testing isn’t bullet-proof, but it helps users help us to help
them! Shown above is the Silverback usability testing software.

In the movie 10 Things I Hate About You, there is a wonderful quote
that sums up our frequent attempts to use our psychic powers to
build the perfect website for the default user: "You’re 18. You don’t

Page of 519 650

know what you want. And you won’t know what you want ’til you’re
45. And even if you get it, you’ll be too old to use it."

If we base design decisions on assumed knowledge of what users
want, we can’t empathetically suit our websites to each user’s needs.

However, add responsiveness and customization to the mix, and our
designs will become easier to use. They’ll become smarter.

Responsive and Suggestive Methods
Users don’t necessarily understand what they need, and designers
typically aim to please the masses. We need to remedy that.

Design patterns and techniques exist to help us interact with our users
and make our work truly responsive to an individual’s needs.

We know that behavioral engineering is powerful and that user-
centric design aids usability.

We also know that every user has different requirements or
preferences for an interface. We already create responsive web
designs that change depending on whether they’re being viewed in
smaller screens (like mobile devices) or bigger screens. The next
logical evolution of Web Design is being able to predict what users
want and to allow users the ability to customize their experience.

Smart designs are customizable and useful to visitors and they’re built
with efficiency in mind, as shown by iGoogle.

Page of 520 650

Building smart web designs — in concept, but not necessarily in
implementation — is simple. Look beyond aesthetics, and think about
how users want to interact with your site.

Personalize the content. Enhance the user experience based on user
activity. Observe what users do on the website, and try to provide
useful signposts and suggestions in the interface.

Presenting Related Content
Knowing what interests the user is half the battle in design. If visitors
read and enjoy an article, they might be open to visiting something
else that’s equally good.

Links to related material serve as incentives for users to continue their
journey on your website. LinkWithin is a tool for showing related
posts.

Provide calls to action that direct visitors to the latest content, and
provide links to useful material on the same subject. Show keyword
tags (or categories and keywords) to identify similar places of interest.
Every little bit helps.

Relative Navigation

This is important for users entering your website from another
website (such as a search engine or social news aggregator); it helps
them find their way around with as few clicks as possible.

Page of 521 650

Offer human-friendly site maps, with helpful directions. Provide useful
error messages, and offer breadcrumb navigation for content
categories.

Content Customization

Many users don’t want to view our websites in the way we present
them. Users expect to be able to format your work to their taste and,
in that way, they can have a personalized site experience. Allowing
your content to be viewed through RSS, for example, is a simplistic
example of allowing your users to access content through their
preferred means.

Smarter Search Features

The search box is the most recognizable way to help refine what
users want to see. Allowing advanced searches could help users find
what they’re looking for quickly. Don’t be afraid to include auto-
completion or to suggest corrections of search terms to respond to
errors.

Customization Methods
The second type of enhancement we can provide helps to create
dynamic websites. With it, we can offer user-specific customizations.
When someone signs up for a service, they expect it to be
personable and meet their needs. Each of us consumes web content
in our own way.

Basic ways to create smarter designs include offering custom themes
or multilingual translations and allowing panels to be moved around
the page (or added or removed entirely).

Profile Personalization

If you have a system in place that allows for user accounts, allow them
to go wild with customization. Greet users by name, show them what
has been updated since their last visit, offer subscription-based email
or RSS notifications, and allow them to modify the site layout (as
above) in their account as a "saved" state.

Page of 522 650

Provide Opportunities for Contributing

This technique is widely used in content management systems and
social networks. Get users to contribute by recommending articles to
them, inviting them to post follow-ups or comments, and offering
customizable widgets or visual shortcuts (based on their preferences).

AddThis lets users recommend your work on the social network of
their choosing.

Some Responsiveness and Customizability Ideas
Finally, there are "in the future" solutions that could increase the
chances of our websites becoming more responsive (even to the
point of being self-correcting). By taking advantage of scripting and
by monitoring our users’ actions autonomously, we could make
websites smarter and more malleable.

Variable Designs

We could build a responsive framework to analyze what devices
visitors use and then provide suitable environments for them. We are
seeing it begin with CSS media queries and platform-unique layouts.
But have you considered blending the techniques by scripting "detect
and redraw" (rather than "redirect")?

Layout Profiles

Another technique for personalizing the experience is to allow users
to build a visual profile. That is, let them choose what appears on the

Page of 523 650

screen, and where. Then let them save it, and save it publicly, so that
all can see — which will enable users to share and apply one
another’s themes and gain unique tailor-made layouts.

Customize Content Presentation Based on User Activity

Here’s the most radical idea for smartening up your designs: you
could write a script that monitors user interactions — such as what
links they click on and how they flow through the site — but use that
data to identify what content to show the user, and redraw the layout
so that useful content becomes more visible.

In effect, the website will train itself to become more useful for its
users.

The BBC offers a powerful "launch pad" platform for visitors who want
to read its content.

The Smart Website
Behavior is a powerful indicator of the user’s process and progress of
negotiating through a website. We place increasing emphasis on
studying patterns and adjusting our pages for a variety of devices.
Strangely enough, for all the energy we put into testing and site
improvements, we don’t create scripts and frameworks that empower
users, whether empowering by recognizing their habits and adapting
accordingly to make the experience easier or to increase returning
visits, or by letting them change things themselves.

Page of 524 650

Mobile browser detection isn’t the limit of our ability to improve
designs for users. Shown above is Mobify, a mobile web platform.

We live in a paradoxical environment: every user is different (and
wants something specific from an interface), yet often, the changes
we implement resort to cycles of iterations (human-powered tweaks).
No silver bullet exists to get our websites to do all of the hard work.

But isn’t this odd: social networks are among the most highly
customizable and flexible infrastructures, yet few websites follow their
lead and let users decide what works best for them.

As we move into the future, user expectations will only increase.
We’ve had it easy as an industry so far — users have just accepted the
way things are.

But as users gain knowledge of the Web and what it’s capable of,
they’ll question the validity of the one-size-fits-all model. They’ll want
compatibility and the ability to customize.

Personalizing designs is a challenge, but one worth taking on.

Page of 525 650

Sources:

• https://www.ebay.com/

• https://silverbackapp.com/

• http://www.linkwithin.com/learn

• http://www.addthis.com/

• https://www.bbc.co.uk/

• https://www.mobify.com/ 

Page of 526 650

https://www.ebay.com/
https://silverbackapp.com/
http://www.linkwithin.com/learn
http://www.addthis.com/
https://www.bbc.co.uk/
https://www.mobify.com/

A Guide to CSS Colors in Web Design
With the exceptions of typography and layout, nothing has a more
profound impact on the way we design and craft websites than color
— from the visuals we showcase through images and media to the
simple choice of whether to use salmon pink or neon green to give a
website that ’90s "Help, I’m going blind!" appeal. This simple guide
will look into CSS colors. You’ll also find excellent color charts and
tools to help you work with color values.

Let’s set our objectives:

• Examine the variety of options that exist

• Analyze basic code examples for each color type

• Examine opacity, transparency and more

• Explore simple color theory and psychology

Page of 527 650

Color Value Notation

There are many types of color notation in CSS, and the lesson to take
away is that you need to decide for yourself which method is best for
you after taking into account cross-browser compatibility and other
limitations.

In many ways, color is limited only by our imagination. Our choices for
shades and contrasts have changed over the years with the
introduction of displays that are capable of displaying many millions
of colors (a far cry from the old 256-color limit).

When we identify that perfect shade in our code, the format we use
to describe and reference it can appear as one of many color values
that help the browser determine exactly what we want it to render
(and where).

Page of 528 650

For every color, there’s a hex, RGB and HSL equivalent. You just need
to know the value.

Hexadecimal Value Notation
Of the many methods to describe color in CSS, the most popular is
the hexadecimal value. It’s been around since the beginning and has
retained maximum browser support. A hexadecimal color value starts
with the hash (#) character, followed by three or six hexadecimal
digits in RGB notation format. For example, the hexadecimal (often
unofficially abbreviated as hex) color value for white is #FFFFFF, or
#FFF in shorthand.

Because hexadecimal value notation supports a wider range of colors
than the equally old keyword system (e.g. red, green, blue, black), it
remains highly used for its preciseness.

Below are simple examples of longhand and shorthand hex value
notation:

a { color: #AABBCC; }
a { color: #ABC; }

RGB Value Notation
Of course, while hex codes remain highly popular in CSS, many
designers don’t realize that the other convention for RGB color
notation has been around just as long (and we can trace its roots back
to the earliest CSS specification). Using 0 to 255 numerals for each of

Page of 529 650

the red, green and blue values that comprise our RGB colors (or using
percentages instead), we can present our choices in an easier-to-read
format.

Below are simple examples of RGB representations of colors:

a { color: rgb(170, 187, 204); }
a { color: rgb(67%, 73%, 80%); }

HSL Value Notation
We also have HSL, which is the new kid on the block. Built to
complement the existing RGB system, HSL allows us to combine hue,
saturation and brightness into a triple declaration.

HSL makes guessing colors easier because you are declaring shades
that are either lighter or darker by increasing or decreasing other
values (against the base hue).

Hues are declared in degrees of the color circle (a value of 0 to 360),
and both saturation and brightness are declared in percentages.

Below is a simple example of an HSL representation of a color:

a { color: hsl(210, 13.3%, 73.3%); }

Color Keywords and X11
So far, CSS notation may seem quite difficult for beginners, especially
if hexadecimal values and color calculations (using percentages,
degrees of the color circle or light values from the RGB spectrum)
aren’t your thing.

Fear not. A bunch of explicitly worded alternatives, referred to as
color keywords, can help.

Unlike the other methods, the supported values are limited, but they
do what they do well.

Using a color keyword is one of the simplest methods of describing
color in CSS. Rather than using some weird notation that is all but alien
to the average end user, simply provide one of a base set of values
that describe the color by a recognizable name.

Page of 530 650

The color names are limited to 16 values but, as we’ll find out, can be
expanded using an extended palette. Below is a simple example:

a { color: green; }

Basic color keyword notation has been around for a long time, but
given the limitations of the 16 base colors mentioned above, browser
makers (and now the CSS3 spec, which has adopted the values from
the SVG specification) have expanded the range of colors by taking
advantage of the X11 extended color palette (which gives us over 100
named colors).

We can describe colors using keywords (as long as they are
supported by browsers).

The only potential problem with X11 is that browser support and
consistency aren’t a guarantee (some color clashes can occur, for
example).

Page of 531 650

The X11 palette gives us an extended, supported list of color keyword
names.

System Colors
Finally, one other group of color keywords needs to be mentioned.
System colors allow designers to match certain color choices to those
of the operating system’s default scheme.

Think of the display options in Windows and how you can alter the
color of system text, the background, title bars and such; the
keywords ask the browser to emulate them.

However, system color keywords are deprecated, poorly supported
and dangerous for your website’s accessibility because you leave it
up to the user’s OS to decide on colors and native appearance.

Page of 532 650

System colors were an attempt to make websites look and feel more
like an operating system.

Color Opacity and Transparency
So far, we have outlined the basics of color value notations, and you
could be forgiven for thinking that simply telling the browser what
color you want is all there is to it. But with the advent of CSS3 comes
an additional level of controlling colors, bringing us the ability to layer
semi-transparent or opaque effects onto objects.

Opacity and transparency effects on websites can be subtle and quite
beautiful.

Page of 533 650

As with the usual color notation, there are many ways to achieve this.
Below are a few of the most common.

Opacity

First, let’s discuss opacity, which is perhaps the trickiest to make cross-
compatible due to all of the browsers and versions that need
supporting. While opacity appeared only in CSS3, it has quite a history
of early browser support, especially in Internet Explorer (which used
the proprietary DirectX filter property). Getting the mix exactly right is
a challenge, and some people use different blends to maintain the
effect.

Below is a solid formula that includes everything you need for
bulletproof opacity:

div {
opacity: 0.5;
-moz-opacity: 0.5;
-khtml-opacity: 0.5;
-ms-filter:
"progid:DXImageTransform.Microsoft.Alpha(Opacity=50)";
filter: alpha(opacity=50);

}

Transparency

Transparency has also been revitalized with CSS3. No longer are you
limited to image-based alpha transparency (although that’s still an
option) or single-color transparency effects on images. Modern
browsers take advantage of both RGBa and HSLa, which, as you can
guess, use conventional RGB and HSL notation but with a percentage-
based alpha transparency value attached to the end.

Below are simple examples of RGB and HSL with alpha-transparency
of 0.5 (or 50%):

a { color: rgba(170, 187, 204, 0.5); }
a { color: rgba(67%, 73%, 80%, 0.5); }
a { Color: hsla(210, 13.3%, 73.3%, 0.5); }

Page of 534 650

Safe Colors
With something as important as color, you’d expect compatibility to
be a given. But the situation in reality is far from perfect. The X11 color
system isn’t supported equally across web browsers (and has only just
been added to the CSS specification). HSL, HSLa and RGBa are new
additions to CSS3 and so cannot be relied on in older browsers;
system colors have been deprecated; and both opacity and alpha-
transparency support are messy!

If you think things are limited now, just think back to when colors
were restrictive.

Even the base colors we depend on could potentially be a problem
on older hardware, because back when displays could render only
256 colors (or even further back with 8-bit displays), compatibility
issues were serious enough for us to limit the power behind color
notation.

To ensure that all devices got a consistent and usable look and feel,
three levels of safe color use were formed.

Really-safe Colors

This existed back when 8-bit displays were still fairly common,
because on those displays, only 22 of the colors defined as "web-
safe" displayed reliably.

Page of 535 650

Web-safe Colors

This is the one that most designers know (and some still use). 216
colors were available (of the 256 that included dithering), mainly for
older displays.

Web-smart Colors

This was 4,096 colors and was produced to remove the limitations of
the web-safe palette, while keeping color use reasonably compatible.

Even if you look beyond compatibility, web designers have a few
additional complications with color use, mainly as a result of web
accessibility. Color blindness affects many individuals worldwide, and
the condition has varying degrees of severity, which makes the
situation especially hard to deal with.

Web Accessibility Considerations
Some people may be deficient in a single color, others completely
blind to an entire spectrum, still others able to see only in black and
white (monochromes), and some have little or no vision at all.

Here are the various forms of color blindness:

Monochromacy

The inability to see colors outside of black and gray shades, or, in
rarer cases, the inability to see outside of certain chroma shades like
mild browns or blue variants.

Dichromacy

This is when one of the three basic color mechanisms fails to work
and is commonly referred to as protanopia (blind to red),
deuteranopia (blind to green) and tritanopia (blind to blue).

Trichromacy

This condition is when mechanisms are present but defective (thus
causing confusion). Trichromacy includes protanomaly (reduced red),
deuteranomaly (reduced green, which is common) and tritanomaly
(reduced blue).

Page of 536 650

This combination of issues affecting web accessibility requires us to
be more sensitive to how we use color (and the colors we choose),
so that we make our websites easy to use, engaging and highly
readable.

While some colors look perfectly fine to one set of eyes, certain
conditions could render your work useless or invisible to less
fortunate users.

Color blindness is hard to emulate, but there are tools to help us out.

If you don’t currently consider color blindness in your designs, you
should start right away. To help you on your way, read 10 Tools for
Evaluating Web Design Accessibility.

Color Associations
Let’s just briefly go over some basic color associations. As you can
see, there is more to color than meets the eye. Color can have a
dramatic impact on how users interact with the page, and studies on
the effects of color on buying habits and behavior are well known
among designers and psychologists. Plenty of articles about color
theory exist, so don’t shy away from pursuing the subject further,
because it could benefit your decision-making process.

When we see certain colors, many of us subconsciously associate
them with things we know from the world around us. For example,
when we see the color red, we may think of love, blood or passion
depending on various factors such as cultural upbringing and

Page of 537 650

personal experiences. We can use these associations to impress our
identity on users, just as painters use color to elicit emotion. For
example, a website about vampires would be better served by a red
and black palette than a yellow and green one because those are the
colors traditionally associated with the genre.

Many different color associations arise from culture, and some are
quite obvious.

Not only does this psychological phenomenon affect our perceptions
of the environment (though to what extent is still up for debate),
different cultures associate colors with different things; we mustn’t
assume that Western standards hold true worldwide.

Another color association is with temperature: we often associate
blue with cool things and red with hot things, and this can be seen in
our visuals.

Color psychology can help you better connect with your audience.

Page of 538 650

Color Tools and Resources
Below is a list of links related to color in web design that you might
want to explore.

Color Charts

• CSS 2.1 specification: Colors - https://www.w3.org/TR/CSS21/
syndata.html#color-units

• CSS3 color specification - https://www.w3.org/TR/css-color-3/

• Color names - http://coloria.net/bonus/colornames.htm

• Color Codes - http://www.december.com/html/spec/
colorcodes.html

• Really-safe colors - http://web.archive.org/web/
20001218100700/http://hotwired.lycos.com:80/webmonkey/
00/37/stuff2a/complete_websafe_216/reallysafe_palette.html

• Web-safe colors - http://www.elizabethcastro.com/html/colors/
websafecolors.html

• Web-smart colors - http://cloford.com/resources/colours/
websmart1.htm

• Colorblind Web Page Filter - https://www.toptal.com/
designers/colorfilter

• The Meaning of Colors - http://sibagraphics.com/utilities/the-
meaning-of-colours/

Color Pickers

• ColorSchemer Studio 2

• Color Cop (free) - http://colorcop.net/

• Adobe Kuler (web-based) - https://color.adobe.com/

• ColorToy (iOS)

• Magic Color Picker (Android)

Page of 539 650

https://www.w3.org/TR/CSS21/syndata.html#color-units
https://www.w3.org/TR/CSS21/syndata.html#color-units
https://www.w3.org/TR/css-color-3/
http://coloria.net/bonus/colornames.htm
http://www.december.com/html/spec/colorcodes.html
http://www.december.com/html/spec/colorcodes.html
http://www.december.com/html/spec/colorcodes.html
http://web.archive.org/web/20001218100700/http://hotwired.lycos.com:80/webmonkey/00/37/stuff2a/complete_websafe_216/reallysafe_palette.html
http://web.archive.org/web/20001218100700/http://hotwired.lycos.com:80/webmonkey/00/37/stuff2a/complete_websafe_216/reallysafe_palette.html
http://web.archive.org/web/20001218100700/http://hotwired.lycos.com:80/webmonkey/00/37/stuff2a/complete_websafe_216/reallysafe_palette.html
http://www.elizabethcastro.com/html/colors/websafecolors.html
http://www.elizabethcastro.com/html/colors/websafecolors.html
http://www.elizabethcastro.com/html/colors/websafecolors.html
http://cloford.com/resources/colours/websmart1.htm
http://cloford.com/resources/colours/websmart1.htm
https://www.toptal.com/designers/colorfilter
https://www.toptal.com/designers/colorfilter
http://sibagraphics.com/utilities/the-meaning-of-colours/
http://sibagraphics.com/utilities/the-meaning-of-colours/
http://colorcop.net/
https://color.adobe.com/

Conclusion
Color plays a huge role in web design, and our implementation of it
matters. Whether we’re playing with contrast, shades, hues,
transparency and so forth, our goal is to produce websites that are
aesthetically pleasing and relevant to our audience.

Our choices should avoid clashes and blurring, and we should
choose a palette that is compatible and accessible to our users.

CSS has given us the groundwork to use any color we desire, and
CSS3 offers additional tools, such as opacity.

But with great flexibility comes great responsibility. Color covers
every square inch of our websites, and we should never
underestimate its value to our work. Review the color system you are
currently using, and be creative in your effort to build increasingly
beautiful, vivid experiences. Your colors should leave a positive,
lasting impression.

Page of 540 650

5 Little-Known Web Files That Can
Enhance Your Website
Previously, I wrote about 5 web files that will improve your website
and discussed files that, while small in size, pack a solid punch and
make our work that little bit better. In this article, we’ll look at five
more web files that can improve and your website.

Quick Overview
Here are the files we will cover:

• P3P.xml – for user privacy

• Geo.kml (and Geo.rdf) – for geolocation

• Humans.txt – for attribution

• vCard.vcf – digital business card

• PICS.rdf – declares a website to be safe (or not safe) for young
web users

P3P.xml
Issues related to user privacy on the web are of paramount concern
both to those who store information (site owners) and to those who
submit the information (site users).

The Platform for Privacy Preferences Project (P3P) encourages website
owners to declare all details relating to their privacy measures in a
standardized XML document (or via meta tags), so that browsers can
pick up the information, display warnings and details, and empower
users to take whatever action they feel necessary.

On the surface, this system sounds wonderful: it gives users control
over their data, it helps site owners keep them informed, and the
browsers let users choose sites to trust.

Page of 541 650

Platform for Privacy Preferences or Pretty Poor Privacy? The truth is out
there!

Unfortunately, creating the file can be quite complex, with all of the
variables involved (it’s like filing a tax return).

Worse, Internet Explorer is the only major browser that does much
with the file. It grants greater control over cookie-blocking in IE6+,
while letting you display an on-screen privacy policy.

In addition, the issuer of the file is responsible for complying with its
own guidelines, and there is no enforcement.

The reality is that, with all of the critics and compatibility issues, no
alternative has gained as broad of a support as P3P.

Website owners need to deal with these increasingly prevalent
privacy issues, and because P3P offers a workable solution right now,
adopting it for the sake of IE, privacy search engines, and other user-
focused tools is justifiable.

Creating a P3P.xml File
Once you’ve created the file, it requires little maintenance.

There are two ways to go about creating a P3P.xml file.

Page of 542 650

One way is you could follow the W3C Platform for Privacy Preferences
1.0 (P3P1.0) specification and build the file by hand using your favorite
text editor.

Alternatively, a few useful apps will do the work for you.

P3P.xml tools:

• IBM P3P Policy Editor (freeware)

• JRC Policy Workbench (open source) - https://sourceforge.net/
projects/jrc-policy-api/

• P3PEdit (web-based, $39)

Other useful resources:

• P3P policy validator - https://www.w3.org/P3P/validator.html

• Internet Explorer and P3P - https://blogs.msdn.microsoft.com/
ieinternals/2013/09/17/a-quick-look-at-p3p/

• P3P privacy verification - http://www.privacybird.org/

Once you’ve created the file, name it P3P.xml, put it in either the site’s
root directory or a directory named w3c.

Next, you’ll need to add a reference in the <head> of your HTML
document. Below is a sample reference:

<head>
<link rel="P3Pv1" type=" text/xml" href="/w3c/p3p.xml" />

</head>

Geo.kml and Geo.rdf
Geotagging has taken the web by storm. Disclosing your geographic
location to site visitors can build trust, especially in e-commerce
websites.

Page of 543 650

https://sourceforge.net/projects/jrc-policy-api/
https://sourceforge.net/projects/jrc-policy-api/
https://www.w3.org/P3P/validator.html
https://blogs.msdn.microsoft.com/ieinternals/2013/09/17/a-quick-look-at-p3p/
https://blogs.msdn.microsoft.com/ieinternals/2013/09/17/a-quick-look-at-p3p/
https://blogs.msdn.microsoft.com/ieinternals/2013/09/17/a-quick-look-at-p3p/
http://www.privacybird.org/

Using Google Earth or Maps, we can guide visitors to our office.

The benefits of geotagging are quite evident. You let users see where
your offices are (great if you need to arrange meetings with clients at
your headquarters). Also, showing that there are real people behind
the website makes you seem less like an anonymous corporation. Not
to mention, mapping services will be able to index you in their
listings.

There are several possible approaches to geotagging your site,
including using microformats. We’ll look at how to build two different
solutions: one for Google Earth (Geo.kml) and a helpful RDF fallback
(Geo.rdf) for other tools.

Creating a Geo.kml file
You can create this file using any text editor. You could name the file
after the website or place that you’re mapping. For example, if we
made a file for Six Revisions, it could be named SixRevisions.kml.

Put your Geo.kml file in the root directory of your website.

Below is a basic example of what the code should include:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://
www.google.com/kml/ext/2.2" xmlns:kml="http://
www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/
2005/Atom">

Page of 544 650

<Document>
<name>Brighton</name>
<description>The place that I call home!</description>
<Style id="pin"><IconStyle><Icon><href>http://
maps.google.com/mapfiles/kml/pushpin/ylw-
pushpin.png</href></Icon></IconStyle></Style>
<Placemark>

<LookAt>
<longitude>-0.13642</longitude>
<latitude>50.819522</latitude>
<altitude>0</altitude>
<tilt>0</tilt>
<range>5500</range>
</LookAt>
<styleUrl>#pin</styleUrl>
<Point><coordinates>-0.13642,50.819522,0</
coordinates></Point>

</Placemark>
</Document>

</kml>

Every KML file begins with a document type declaration (DTD), which
states that this is an XML file that follows the KML specification.

Inside the KML element, there should be a <Document> tag (just as an
HTML document has a <body> tag), and in it, you put the details of
your address.

Briefly, here are explanations for tags to include:

• <name> and <description> lets users know what is being shown

• <style> offers an image to pinpoint the location on the globe

• <Placemark> pinpoints the object

• <Point> contains <coordinates> to the latitude and longitude of
your location

• <LookAt> data about the coordinates, such as altitude and tilt

• <range> tells how far to zoom in

Page of 545 650

Most of these are easy to declare. The only thing to find are the
coordinates.

Finding your coordinates is rather easy. If you visit maps.google.com
and type in the place or address, half the job is done.

Of the many methods of extracting these details, my favorite requires
the least amount of work. Simply using the script below into the
address bar after you’ve found your location will yield the information.

javascript:void(prompt('',gApplication.getMap().getCenter()));

To reference it in HTML, add the following inside your <head> tag:

<link rel="alternate" type="application/vnd.google-earth.kml+xml"
href="SixRevisions.kml" />

Of course, you can do more with your KML file than what is described
here. If you’d like to explore further, Google has a KML Reference
documentation.

Page of 546 650

Creating a Geo.rdf File
Of course, not everyone uses Google Earth, and many other web
services exist (such as search engines) that gather geodata. So, we
should also produce an RDF file that works some geo magic on the
semantic web.

Geodata has a lot of uses, and it’s very easy to create.

If you have the coordinates, the file is actually a lot more
straightforward to create than the Google Earth KML file, because
we’re not worried about visual representation; we simply want to get
the coordinates out there for other services to make use of them
(whether social networks or search engines).

To build the file, create a new document named Geo.rdf, and in it, just
use the code below, replacing details such as your website
(rdf:about), the place or website name (dc:title), and your coordinates
(geo:lat and geo:long tags).

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:geo="http://
www.w3.org/2003/01/geo/wgs84_pos#" xmlns:rdf="http://
www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.mysite.com">
<dc:title>Brighton</dc:title>
<foaf:topic rdf:parseType="Resource">

Page of 547 650

<geo:lat>50.819522</geo:lat>
<geo:long>-0.13642</geo:long>
</foaf:topic>
</rdf:Description>

</rdf:RDF>

Once you’ve created the file, add the link reference to your website:

<link rel="alternate" type="application/rdf+xml" title="Geo"
href="Geo.rdf" />

Humans.txt
The proper way to attribute work has been up for debate since the
Internet went mainstream. As professionals, we want to act in our
clients’ best interests, but as creatives, we want people to know who
is behind the wonderful work we put together (which could lead to
new clients).

Websites are built by people, so why not credit them?

humans.txt is a standard format not unlike a robots.txt, but with the
intention of providing information about the people behind a
particular website.

Creating a Humans.txt File
The great thing about Humans.txt is its simplicity. While there is no
formal standard for what (or who) to include, there are some best

Page of 548 650

practices to ensure that the file is as human-readable (and possibly
machine-readable, for web spiders) as possible.

To begin, create a humans.txt file and put it in your website’s root
directory. In that file, you will be enclosing three primary categories in
comments. You could add and remove categories as you see fit

The first category, TEAM, can include directives such as title, position,
website, Twitter profile and location. The purpose is to provide
information about the individuals responsible for creating the site.

The second category, THANKS, attributes the project’s contributors by
name (or URL).

The final category, SITE, provides information about the standards,
components and software used in the website’s production, along
with a timestamp for the last update and language details.

Below I’ve adapted a humans.txt template, illustrating this format:

/* TEAM */
Title: YourName.
Position: Job Role
Site: http://yoursite.com
Twitter: @YourSite
Location: City, Country.
/* THANKS */
Name: TheirName
/* SITE */
Updated: YYYY/MM/DD
Language: English (US)
Standards: HTML5, CSS3, JavaScript
Components: jQuery, etc.
Software: Adobe Photoshop, Notepad++

Once you’ve filled in as much detail as you’d like (remember that this
file is primarily for humans, so keep it simple), you just need to link to
the <head> (as always).

<link type="text/plain" rel="author" href="humans.txt" />

It’s a great way to credit the entire team unobtrusively.

Page of 549 650

vCard.vcf
Next on the list is a personal favorite of mine. In this era of
communication, enabling clients and visitors to get (and stay) in touch
is essential. Our contact pages are often fragmented by social
network icons, email forms and lists of instant messaging and VoIP
accounts. Visitors and clients just want to get in touch with us, so
make the process as easy as possible.

With a few lines of code, we can produce a useful importable contact
reference.

vCard is a standardized format for digital business cards. One file lists
all of the applications, services and social networks that people can
use to connect with you. It functions as an index of meta data about
you or your business, and people can import all of the data into their
favorite address book or email client. Microsoft Outlook and other
clients support vCards, as do the Windows and Mac address books.

vCard has its own microformat that semantically marks up any related
information on our pages. You could offer just the microformat
version, but for compatibility and ease of access, vCard (or even both
formats) is preferred.

Page of 550 650

Creating a vCard.vcf File
The first thing to do is create the vCard.vcf file (which is case-
insensitive). Inside are a few things every vCard must have, according
to the specifications:

• BEGIN:VCARD and END:VCARD (case-sensitive) to map the start
and end of the line (the same way that we open and close the
<html> tag in HTML documents)

• VERSION: with a value of 3.0 (the latest edition)

• N: (Lastname;Firstname) and FN: (Full Name) directives

Here is an example:

BEGIN:VCARD
VERSION:3.0
N:LastName;FirstName
FN:FirstName SecondNames LastName
END:VCARD

You can add a bunch of other useful directives to declare things about
yourself; if supported, these details can be used by other apps and
services.

The general syntax for vCard files is the directive in uppercase,
followed by a colon character, except where a variable is required
(like TYPE=HOME or EMAIL), in which case the colon becomes a semi-
colon. TYPE= becomes the variable identifier, multiple variables are
comma-separated (like TYPE=HOME, WORK), and new lines for values
are identified by more semi-colons.

Below are some examples of the various directives:

NICKNAME:Name
X-GENDER:Male
BDAY:YYYY-MM-DDT
ORG:Company
TITLE:Web Designer
URL;TYPE=WORK:http://www.yoursite.com/
EMAIL;INTERNET:Hello@yoursite.com

Page of 551 650

EMAIL;TYPE=PREF,INTERNET:Support@yoursite.com
X-MSN;TYPE=HOME:You@hotmail.com
X-SKYPE;TYPE=WORK:MySkypeID
X-GOOGLE-TALK;TYPE=WORK:MyGoogleID

The variable TYPE=PREF indicates a preferred contact type (if the
destination program recognizes it).

For more details about directives and extensions, please check the
links below. You can add all sorts of awesome things into vCards, like
images, links and even sometimes audio!

• Basic directives - https://en.wikipedia.org/wiki/
VCard#Properties

• Known extensions - https://en.wikipedia.org/wiki/
VCard#vCard_extensions

There are many more directives than are mentioned here. Another
reason vCards are great is that they are extensible, supporting
proprietary extensions. vCard extensions are prefixed with X- (the
way we use vendor prefixes like -moz- in CSS). The only downside is
that, as with CSS, support isn’t a given, so you’ll have to figure out the
best semantic route.

Once you have your vCard.vcf ready, reference it in your HTML
documents like so:

<link rel="alternate" type="text/directory" title"vCard"
href="vCard.vcf" />

PICS.rdf
Not everything on the web is child-friendly, and this last file helps with
that issue. Many software providers (even Windows with IE6+)
provide specialized tools to filter out objectionable content for young
audiences (i.e. generic content filtering). While some providers use
human-based filtering, PICS (Platform for Internet Content Selection)
helps any automated product gauge whether your content is age-
appropriate. And it’s well supported.

Page of 552 650

https://en.wikipedia.org/wiki/VCard#Properties
https://en.wikipedia.org/wiki/VCard#Properties
https://en.wikipedia.org/wiki/VCard#Properties
https://en.wikipedia.org/wiki/VCard#vCard_extensions
https://en.wikipedia.org/wiki/VCard#vCard_extensions
https://en.wikipedia.org/wiki/VCard#vCard_extensions

The content advisor in Internet Explorer is just one system that
integrates PICS tags.

Getting your content blocked automatically reduces your ability to
reach users, and while some newer tools rely on human screening
(because of a distrust of self-regulation), we can at least certify our
content to aid with such decisions. It’s pretty much like how the music
and film industries work, and there are several ratings systems, too.

Creating a PICS.rdf file
Because there are several ratings systems, each with its own
methodology, I’ve adapted one of the most popular formats (ICRA’s
RDF method) to accept other types of labeling. Even though the ICRA
has ceased developing its PICS labeling system, the system is still
widely used by content filters, so it still has an important role to play,
until something better comes along.

Start by creating a PICS.rdf file, and use the following code in it:

<?xml version="1.0" encoding="iso-8859-1"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://
purl.org/dc/terms/" xmlns:label="http://www.w3.org/2004/12/q/
contentlabel#" xmlns:icra="http://www.icra.org/rdfs/
vocabularyv03#" xmlns:rsac="http://www.icra.org/rdfs/

Page of 553 650

vocabularyv01#" xmlns:ss="http://www.safesurf.com/ssplan/"
xmlns:sfk="http://www.weburbia.com/safe/ratings/ ">

<rdf:Description rdf:about="">
<dc:creator rdf:resource="http://www.icra.org" />
<dc:creator rdf:resource="http://www.safesurf.com" />
<dc:creator rdf:resource="http://www.weburbia.com/safe" /
>
<dcterms:issued>2011-04-15</dcterms:issued>
<label:authorityFor>http://www.icra.org/rdfs/
vocabularyv03#</label:authorityFor>

</rdf:Description>
<label:Ruleset>

<label:hasHostRestrictions><label:Hosts><label:hostRestrictio
n>www.yoursite.com</label:hostRestriction></
label:Hosts></label:hasHostRestrictions>
<label:hasDefaultLabel rdf:resource="#label_1" />

</label:Ruleset>
<label:ContentLabel rdf:ID="label_1">
<rdfs:comment>ICRA Ratings</rdfs:comment>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_2">
<rdfs:comment>RSACi Ratings</rdfs:comment>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_3">
<rdfs:comment>SafeSurf Ratings</rdfs:comment>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_4">
<rdfs:comment>WebUrbia Ratings</rdfs:comment>

</label:ContentLabel>

</rdf:RDF>

Page of 554 650

Below each rdfs:comment element, you’ll notice some empty spaces.
Your job is to fill them in according to the specifications of the various
groups. Guides exist to help you determine what code to put in each
category (mentioned below).

In each section, create a tag that begins with the letters of the system
you’re using there, and then (separated by a colon) define the
relevant rating by its unique abbreviation. Once you have the tag,
simply enter the appropriate digit, 0 or 1, inside it.

ICRA, RSAC, SafeSurf and Safe for Kids represent the four most popular
PICS systems.

For example, if you used ICRA, your tags would be <icra:x></icra:x>,
with the x‘s being replaced by the rating, and the 1 or 0 value going
between the tags.

For RSAC, it would be <rsac:x>, for SafeSurf it would be <ss:x>, and for
Weburbia’s "Safe for Kids" system it would be <sfk:x>.

To determine exactly what sections you’ll need, visit these websites:

• ICRA - http://web.archive.org/web/20090228211023/http:/
www.icra.org/decode/

• RSAC - https://en.wikipedia.org/wiki/
Recreational_Software_Advisory_Council

• SafeSurf - http://www.safesurf.com/ssplan.htm

• WebUrbia - https://web.archive.org/web/20061031134823/
http://www.weburbia.com/safe/ratings.htm

Page of 555 650

http://web.archive.org/web/20090228211023/http:/www.icra.org/decode/
http://web.archive.org/web/20090228211023/http:/www.icra.org/decode/
http://web.archive.org/web/20090228211023/http:/www.icra.org/decode/
https://en.wikipedia.org/wiki/Recreational_Software_Advisory_Council
https://en.wikipedia.org/wiki/Recreational_Software_Advisory_Council
http://www.safesurf.com/ssplan.htm
https://web.archive.org/web/20061031134823/http://www.weburbia.com/safe/ratings.htm
https://web.archive.org/web/20061031134823/http://www.weburbia.com/safe/ratings.htm
https://web.archive.org/web/20061031134823/http://www.weburbia.com/safe/ratings.htm

To see how this code might look, I’ve pre-built some example labels.
ICRA labels have a two-letter code (for example, NZ declares that
there is no nudity on the website). For RSAC, it’s a letter followed by a
number (indicating severity).

For SafeSurf, it’s a slightly longer value (SS~~, followed by two zeros
and the number or letter). The easiest of all (with only one
declaration) is Weburbia’s "Safe for Kids" scheme, with an S to
represent the safety level, and a value of a 0, 1 or 2 to match the PICS
scheme.

Below are some basic examples of PICS labels from the four
providers:

<label:ContentLabel rdf:ID="label_1">
<rdfs:comment>ICRA Ratings</rdfs:comment>
<icra:nz>1</icra:nz>
<icra:sz>1</icra:sz>
<icra:vz>1</icra:vz>
<icra:lz>1</icra:lz>
<icra:oz>1</icra:oz>
<icra:cz>1</icra:cz>
<icra:xz>1</icra:xz>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_2">

<rdfs:comment>RSACi Ratings</rdfs:comment>
<rsac:L>0</rsac:L>
<rsac:N>0</rsac:N>
<rsac:S>0</rsac:S>
<rsac:V>0</rsac:V>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_3">

<rdfs:comment>SafeSurf Ratings</rdfs:comment>
<ss:ss000>1</ss:ss000>
<ss:ss001>1</ss:ss001>
<ss:ss002>1</ss:ss002>
<ss:ss003>1</ss:ss003>
<ss:ss004>1</ss:ss004>

Page of 556 650

<ss:ss005>1</ss:ss005>
<ss:ss006>1</ss:ss006>
<ss:ss007>1</ss:ss007>
<ss:ss008>1</ss:ss008>
<ss:ss009>1</ss:ss009>
<ss:ss00A>1</ss:ss00A>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_4">

<rdfs:comment>WebUrbia Ratings</rdfs:comment>
<SFK:S>0</SFK:S>

</label:ContentLabel>

Once you’ve created the PICS label and determined your content’s
suitability for younger audiences (basically by filling out the RDF file
like a questionnaire), all that’s left to do is save the file, put it in the
root directory of your website, and declare it in the <head> via a link
tag:

<link rel="meta" href="PICS.rdf" type="application/rdf+xml"
title="PICS labels" />

Page of 557 650

Summary
With these five easy to use files, you should find yourself at the
pinnacle of modern Web Standards.

Sources:

• https://www.w3.org/TR/P3P/

• https://en.wikipedia.org/wiki/Geotagging

• https://www.google.com/earth/index.html

• https://maps.google.com/

• https://developers.google.com/kml/documentation/
kmlreference?csw=1

• https://www.w3.org/2003/01/geo/

• http://humanstxt.org/

• https://en.wikipedia.org/wiki/VCard

• http://microformats.org/wiki/h-card  

Page of 558 650

https://www.w3.org/TR/P3P/
https://en.wikipedia.org/wiki/Geotagging
https://www.google.com/earth/index.html
https://maps.google.com/
https://developers.google.com/kml/documentation/kmlreference?csw=1
https://developers.google.com/kml/documentation/kmlreference?csw=1
https://www.w3.org/2003/01/geo/
http://humanstxt.org/
https://en.wikipedia.org/wiki/VCard
http://microformats.org/wiki/h-card

The Evolution of Internet-Enabled
Devices
The Internet is a wondrous thing. It’s an unrivaled source of
knowledge for its users, and as web designers and web developers, it
keeps many of us from becoming homeless with "Will code for food"
signs hanging around our necks!

As the Web matures, the devices that provide access to it have
evolved along with it. No longer are we limited to "surfing the ‘net" on
a 28.8 kbps dial-up modem. These days, we don’t even require a
computer to go online — we have smartphones, tablets, e-book
readers like the Kindle, and more. Let’s look at the evolution of the
hardware that gives us access to the Internet.

Computers and Laptops
We can trace our digital ancestry back to devices we still use today:
traditional desktop and laptop computers.

In the formative years, designing and developing websites wasn’t
much to write home about. Web standards were in their infancy,
browsers were firing bazookas at one another from the rooftops of
the digital infrastructure, and a "feature" of many websites was a
counter that told everyone that the website had "000002" visitors (one
of those being you, the person who built the site). Isn’t nostalgia fun?

Page of 559 650

They’ve been on earth longer than some geeks, and we still love ’em!
Source: TehBoris

Screens started in the 800×600 range, grew to 1024×768, and then a
few others fell into the mix as resolutions became something of a
"whatever works" issue for users.

That, and browser windows used their fair share of monitor screen
real estate, what with the unnecessary Ask.com and Alexa.com
toolbars and sidebars people installed.

Smartphones
Then everything changed. There were rumors of cell phones gaining
Internet access, whispers about how this would change everything.

One little smartphone, powered by hearsay, Steve Jobs and unicorn
blood, broke open the doors on a new range of devices to design
for. Smartphones came onto the scene.

What made things even more fun was that other rendering engines
joined the fray, too!

Page of 560 650

Some are fully featured, and others… not so much. Source: Guy
Schmidt

No longer were cell phones powered by WML (a special markup
language intended for portable devices). No longer did we need to
access the Web on scaled-down user experiences through PDAs if we
wanted to browse on the go. Touchscreens were the next big
interface movement. Displays got smaller, and imaginations got
bigger.

For the cell phone makers that didn’t put radioactive glowing apples
on the backs of their products, the need to build something
competitive grew — as did the number of mobile-friendly browsers
for us to test our stuff on.

Tablets, Netbooks and eReaders
The switch-to-mobile excitement was a giant leap for mankind, but
the third Internet device evolution was a small step for many of us.

Sure, mobile devices were cool; we could research Angry Birds
cheats on some website while sitting on a train. We got a taste for the
Mobile Web and wanted more.

So touchscreen smartphones scaled up to become tablets, PCs
scaled down to become netbooks, and printed books are being
replaced with Internet-enabled reading devices.

Thus came the next wave of devices!

Page of 561 650

They need to boot, but you’re less likely to have them thrown at you.
Source: kodomut

Tablets aren’t exactly new. But when they became popular, and then
ubiquitous, they gave us designers a reason to pay attention. The
Web was no longer bound by one of two device types; we all
wanted to pretend we were in Minority Report, with thin yet full-
featured gadgets. Netbooks, being cheap, also became popular, and
resolution consistency became something designers could only
dream about.

Television and Game Consoles
So many things are becoming web-enabled that we’ve arrived at the
next era of device types — one that is set to blow the wheels off the
tablet surge in terms of widespread appeal. Our old friend, the
television, and its time-eating sidekick, the game console, are
becoming web-enabled faster than you can say "Oh no, not
something else to design for!"

They present a new range of issues to address. (Try navigating a
website with a TV remote.)

Page of 562 650

There are adaptors for everything, so users can browse with almost
anything! Source: Plinkk

A whole new type of web browsing could arise: the ability to browse
websites by re-enacting the YMCA song by way of a HAL-9000-style
geek-mocking device called the Kinect (i.e. with gestures and
movement).

And the ways we code, design and use the Web could change as
well. Personally, I’m all for learning to code for all kinds of devices.
Nothing seems cooler than waving a Wii-mote like a ninja in front of a
webcam that’s attached to a 100-inch LCD display while telling clients,
"Yes sir, it’s all part of my job."

Vehicles and Home Appliances
Another advancement in our consumption of the Web, beyond TV,
has been the inclusion of web-enabled devices in trains, planes and
automobiles. The ability to watch your favorite YouTube clips while on
the move is quickly becoming standard — though we still need safety
devices bolted on to ensure that we don’t get distracted by the
hamster dance video while driving and crashing into a lake.

Page of 563 650

Having web access in your car makes you wonder whether you’re
addicted. Source: battlecreekcvb

Yet with this next area of expansion, the web-enabled movement
gets still more bizarre.

You may think the kitchen is one place that will remain Web-free, but
I’m sure you have household appliances with some degree of
cleverness.

In the past, we had glimpses of Internet-enabled appliances, but at
the Consumer Electronics Show and other technology expos this year,
companies announced that ovens, refrigerators, dishwashers and
microwaves would get "webified."

The prospect can be terrifying as well as exciting. I’m sure your
immediate thought, like mine, is of an oven crashing like IE6 and
setting your house on fire.

Page of 564 650

Conclusion
From the early days of computers and laptops to the Mobile Web
movement to the feature-filled tablets, watches, MP3 players,
netbooks, e-book readers, radios and other digital goods becoming
Web-friendly, the way we access the Internet has come a long way.

Yet, even as you read this, the gap between devices is increasing, the
range of platforms is increasing, and, before we know it, we might be
living in houses of the future powered entirely by Rickrolling and troll-
hunting.

As web designers and web developers, we need to account for a
wide range of platforms in order to make our users’ lives convenient.

The Internet is a grand social platform with nigh-endless possibilities
for applications and services. We need to rethink what we choose to
(or choose not to) support.

Luckily, there will always be cool new stuff for designers and
developers to wrestle with, and thankfully, few of us will go out of
business!

Page of 565 650

The Proxority Principle in Web Design
In web design, the position of design elements and the layout of web
pages is everything. So many cool, exciting techniques are available
to help us lay out our designs (especially with CSS3 at our disposal)
that we often forget that structure is as important as aesthetics.

How do you determine where content should appear, and how can a
well-oiled interface increase website readability? This is what we’ll
aim to uncover in this article.

We’re going to examine a basic technique that could help you
improve your general content flow, and, for lack of a better term, I’m
going to call that technique the proxority principle (a portmanteau
word that combines "proximity" and "priority").

Communication through Design
Designers already understand that the relationships between objects
on a page matter. That’s why when we create a design, we think
about visual hierarchy, visual weight, Gestalt psychology, the
distinctiveness of important elements and other principles that affect
relationships between the various components of a web page. It’s
one of the reasons why we tend to get neurotic when it comes to
navigation menus, headers or footers.

With so much going on inside the average web page, getting the
right content to users in the right place and at the right time is quite an
achievement!

If your content isn’t structured suitably, there can be a number of
downsides, such as:

• Critical information getting lost or skipped

• User interaction issues like error-proneness or confusion

• Reduced web accessibility for screen readers

The proxority principle, in a nutshell, puts forth the idea that if we can
prioritize our content to ensure that the most relevant material is
visible and appealing, users will immediately be drawn to it.

Page of 566 650

This principle asserts that all related, important content should be
grouped or joined together whenever possible to allow flow and
feedback.

The art of this technique isn’t in the theory, because we often lay out
content logically as we write it (headings, subheadings, bullet points,
etc.); instead, it’s in the planning stage.

Proxority Principle in Site Navigation
Consider something like a navigation menu. One of the first things we
do when producing the information architecture of a site is to
organize pages and links into one cohesive structure, after which we
add categories or subsections if appropriate.

This technique leads to the development of drop-down menus and
other unique browsing aids which help us to further bind content that
lacks proxority.

When planning navigation menus, one must pay particularly close
attention to the value of pages and their connections, in order to
make them a perfect example of proxority in action.

This particular technique works for any style of website, so whether
you’re scaling a huge service-heavy but content-light layout (like
Amazon) or a content-heavy but feature-light design (like a blog), the
technique should be of use.

Better yet, the principle can help you organize your website’s
information architecture; the proxority between pages is as important
as what exists upon individual pages.

If you find yourself struggling to determine where stuff should be
placed, this strategic guide will help you.

Priority: Boost the Best, Weed out the Worst
Many of us know only too well the benefits of prioritizing. The priority
we give our content plays a huge part in the perceived value it has
upon a page.

Page of 567 650

A site’s logo/name, for example, is recognizable because of its
critically high placement, usually in the top left-hand corner, and it
maintains visibility in that position on every page of a website.

A logo should be dominant over all other objects on a page. That’s its
proxority.

Rate Each Element’s Value

To identify which pieces of a web page are most critical and
important, we need to begin by examining every object in a layout,
no matter how small.

Rate them based on their perceived value (according to what your
visitors need to know or are likely to want to know) and their
functional value (according to what contributions they make to the
website, such as functionality or advertisements).

You can do this either by taking a screen capture (or printout) of the
entire page and annotating it, or by producing a list of everything that
appears on a page. This exercise will help you reassess the value of
your website’s content.

Page of 568 650

Rate images, media, content (at a paragraph level), and everything
else according to this numbering system:

Eliminate Unneeded Elements

When you’ve gone through everything, review the results.

Before we go any further, it’s probably worth mentioning that if you
find content, links or objects that are no longer useful or don’t
contribute anything, remove them.

Eliminating clutter from an interface is tough, but reductionism
improves the general user experience of a website.

For elements rated at a 3, removal might be a bit harsh, so consider
rewording or attaching things together to add value.

This website arranges its critical information into clearly defined
segments for readability.

Rating Description of Element

1 The website cannot function without this.

2 This adds benefits but is non-essential.

3 This supplements or reiterates content.

4 This is redundant or wastes space in some other way.

Page of 569 650

After you’ve identified the stuff that can be deleted, merged or
moved, look at everything you’ve given a rating of 2. These elements
can be the toughest to deal with because you want visitors to benefit
from them, but you don’t want to overburden them.

One solution to giving these these needed, but non-essential
elements an appropriate proxority is to use progressive disclosure:
make content appear on demand with drop-down menus or tooltips,
or display it further down the page so that it’s still available but less
prominent.

Many websites use progressive disclosure to avoid swamping their
users with details.

Proximity: Flow, Feedback and Functionality
We’ve considered the importance of prioritizing every asset on your
page, identifying which bits have more sway than others, eliminating
the fluff that has accumulated, combining weak material into a strong
structure and pushing the less critical data out of the field of vision.

We now need to take all the remaining content and follow through on
the second part of the process: to connect everything logically and
put it all back together, as if it were a jigsaw puzzle — or a storybook,
wherein the plot develops at consecutive points.

Page of 570 650

You should be left with everything that needs to be on your website,
in its most diluted form, with supplementary content either hidden
down the page or waiting in tooltips and extensible data boxes.

Rate Important Elements in Relation to Each Other

Go back over everything to which you have assigned ranks of 1 and 2,
and rank them again; number everything according to what order
you believe readers need to know about it.

If everything ends up where it should end up, it will all make perfect
sense when you read it aloud.

The developers and designers behind this website clearly understand
the need for organization and feedback.

Redesign

Once you’ve got everything labeled, re-shuffle your source code to
match the new reading order. Pay special attention to bits of content
that connect to or depend on other pieces of content (such as image
captions), and put them as close together as possible.

Then, make the necessary changes to your CSS and JavaScript.

Page of 571 650

Proxority: Examples and Patterns in Action
Many websites already exhibit what I’d define as high proxority in that
they take great care to use techniques that account for both priority
(bringing attention to certain elements) and proximity (making
reactions happen directly next to or above the objects being
interacted with).

Below is a showcase of a few examples of best practices in use.
Some we’ve briefly mentioned before, and others are being
introduced here. By following similar practices, you can avoid user
confusion and increase reading efficiency.

Using progressive disclosure to track the progress of a form.

Page of 572 650

Informing visitors of errors as they enter data.

Drop-down menus expanding close to the cursor icon.

Input objects disabling once they’ve been submitted.

Page of 573 650

Progress bars showing loading progress.

Content or light boxes expanding upon user interaction.

Proxority: Origami for the Web
The proxority principle posits that everything you find on a web page
can be assigned a value and a place in sequence, in relation to the
objects that surround it. This idea has existed since the early days of
the Web, but too few designers pay enough attention to it. Think
through what is actually needed, where it is needed and when it

Page of 574 650

should appear (as opposed to simply putting all of the content on the
screen, in its entirety, in an order that "looks pretty"). The need for
such techniques is increasing, especially given the proliferation of
handheld devices and the idea of designing with a "mobile-first"
philosophy.

If content isn’t worthy of a restrictive mobile layout, why is it needed
in the desktop layout?

If you have ten spare minutes, give this simple activity a try. Go
through your website and weed out anything that isn’t offering what it
should. Make existing objects provide greater value to users (or use
less space), and don’t be afraid to reorganize your code and its
content to ensure that what’s needed is what appears. Oh, and if you
do feel tempted to make actions elicit responses, ensure that users
know that your website is responding; after all, you don’t want them
clicking "submit" ten times in a row, only to fail.

Sources:

• https://chrome.google.com/webstore/category/extensions

• http://builtbybuffalo.com/planner

• http://madebysofa.com/

Page of 575 650

https://chrome.google.com/webstore/category/extensions
http://builtbybuffalo.com/planner
http://madebysofa.com/

Getting the Most Out of QR Codes
Using URI Schemes
Lately, everyone has been talking about the potential of the QR code.
It has become the Internet’s equivalent of traditional barcodes (like
those you’d find on physical goods at your favorite retail store).

Someone can take a quick snapshot of a QR code with their
smartphone and immediately have a website up and loaded, so we
could print QR codes on paper and physical goods such as business
cards, magazine ads and posters in order to lead people to our site.

But, more often than not, web developers don’t use QR codes to their
fullest potential.

In this article, we’ll discuss a technique that will unlock the full
potential of QR codes through URI schemes.

How QR Codes Work in a Nutshell
Let’s learn how the QR code mechanism actually works. QR codes, at
their core, are specially generated images that work like barcodes.

Certain commands (known as responses) are built in, and when a QR
code is captured by a camera (usually one on a smartphone or
tablet), the image of the QR code is processed and then the built-in
response is carried out.

A common QR code response is to open a certain website in a web
browser on the device that captures the QR code.

Page of 576 650

QR codes look like the above and contain information that can be
captured by a camera and interpreted by a smartphone, tablet or
computer.

QR-Code Readers
This is where things get interesting. QR-code readers — the apps that
scan the codes and perform the actions — are not equal when it
comes to functionality. Some are able to recognize QR codes and do
all sorts of amazing things, and others can simply open URLs or
display text.

Most smartphones have the same set of basic features (address book,
calendar, texting functionality, alerts and Internet browsing), and a
good QR-code reader can cater to all of those.

With low-functionality apps in the mix, though, URL-opening is likely
the only reliable function that we can expect most QR-code readers
will have.

Page of 577 650

Here’s a list of features that QR-code readers are generally equipped
with:

• Displaying text

• Setting up system alerts

• Adding events to calendars

• Opening URLs in a browser

• Collecting contact information (including vCards)

• Sending email

• Sending text messages (SMS)

• Geolocation

• Calling other phones

• Connecting to WiFi

The Idea: Using URI Schemes
Since browsers can already launch default email clients via a simple
mailto URL (browsers have supported URI schemes like these for
years), could the same technique be used to offer in-app functionality
for other products that have non-native URI schemes and that a QR
reader wouldn’t support by default?

The answer is yes!

If the application supported the scheme, and if the user had the app
the QR represented installed, it would work beautifully — and it
wouldn’t matter which QR-code-reader was used.

Page of 578 650

The Possibilities
Here’s a list of some cool things that are possible:

• Launching native Apple apps (Mail, Phone, FaceTime, Text, Map,
YouTube and iTunes)

• Running JavaScript bookmarklets

• Opening certain IM clients (Skype, AIM, MSN, GTalk, ICQ and
Yahoo)

• Opening special applications (IRC tools, feed readers, FTP clients
and SVN repositories)

• Opening any application that registers a URI scheme when it
installs on a platform

What makes this particular technique so amazing is that it doesn’t rely
on the QR-code reader being very advanced; all it needs is for the
app creator (be it Skype, Evernote or Angry Birds) you want to launch
and interface with to use the system development API to register a
URI scheme.

In the case of Apple, it’s the Cocoa Touch OpenURL method of the
shared UIApplication object, and for other platforms (like Android),
there will be an equivalent somewhere in the documentation.

From scanner to browser to application — the possibilities are
endless!

Page of 579 650

Below is a list of some common non-http URI schemes:

Application URI Scheme or
Protocol

Query Strings

Default e-mail application mailto:<email>?query

Subject

CC

BCC

Body

Default phone application tel:<number> N/A

Default SMS application sms:<number> N/A

Chat Room client irc://<url>:query

port

channel

password

Syndication feed reader feed:<url> N/A

Apple FaceTime facetime:<number> N/A

Skype client
skype:<username|
number>?query

add

call

chat

sendfile

userinfo

Google Talk client gtalk:query?<email>
chat

call

Windows Live Messenger client msnim:query?<email>

add

chat

voice

video 

Page of 580 650

What does this mean for us? As it stands, there are actually quite a
number of applications for the desktop (as well as mobile), which
already use URI schemes.

Take Skype, for instance. Do you want people to be able to capture a
QR code that causes their phones to call you via Skype on their
handsets? That can be done (at least on iOS) right now.

It can also be used to run several native apps, launch JavaScript
bookmarklets (perhaps including apps that run within browsers) and
access the usual FTP and IRC protocols (if associated with something).

Here are some useful links for developers:

• Overview of Existing URI Schemes - https://www.iana.org/
assignments/uri-schemes/uri-schemes.xhtml

• Apple iPhone URI Scheme Reference - https://
developer.apple.com/library/content/featuredarticles/
iPhoneURLScheme_Reference/Introduction/Introduction.html

• Android Custom URI Scheme Code - https://stackoverflow.com/
questions/3471503/how-to-listen-for-a-custom-uri

Yahoo! Messenger client
ymsgr:query?<email|
number>

sendim

addfriend

sendfile

call

callPhone

chat

im

customstatus

getimv

AOL Instant Messenger client aim:query?<username>

goim

goaway

addbuddy

Page of 581 650

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://stackoverflow.com/questions/3471503/how-to-listen-for-a-custom-uri
https://stackoverflow.com/questions/3471503/how-to-listen-for-a-custom-uri
https://stackoverflow.com/questions/3471503/how-to-listen-for-a-custom-uri

Now that you know a bit more about QR codes and have gotten a
brief overview of things you need to know to get started, I’ll outline
the steps to the technique below.

Note: The technique I’ll be describing below can even be used to
execute JavaScript code, so under the wrong set of code-writing
fingers, this could be exploited.

Step 1: Choose the Response You Want to
Perform
First, decide what you’d like the QR code to accomplish. Obviously,
you can use the regular QR-code generator stuff — like sending text
messages to phones or sending emails — but let’s try something
trickier.

We’ll create a Skype QR code that will automatically launch the app
and make a voice call to a Skype contact. (This will only work if the
user that scans the QR code has Skype installed).

Step 2: Create a URL Using a URL-shortening
Service
Many QR-code generators suffer from a particular problem: if you try
to put a mailto or other non-http link into them, they sometimes think
that an error occurred (this also affects some reader apps).

This, of course, won’t get our Skype launcher anywhere near being
cross-QR-code-reader-compatible, so we need another solution —
and, luckily, a common one exists that can help get this URL into the
browser (and help web developers monitor click stats too)!

We’re going to use a URL-shortening service. These services are rarely
fussy about what you insert into them, and they push out well-formed
URLs with the HTTP header required for best-possible compatibility
(most QR readers know how to open basic URLs).

Page of 582 650

A URL-shortening service such as TinyURL will turn that unconventional
URL into a generally acceptable one.

For this QR, we’ll call the Skype contact named echo123 — this contact
is the free voice-quality testing contact that Skype offers.

For our URL-shortening service, I’ll use TinyURL, but you can use one
of the many other URL-shortening services out there such as bit.ly,
is.gd and so on.

Just enter your chosen URI scheme into the shortener.

This is the result of my TinyURL link conversion:

URL skype:echo123?call

To http://tinyurl.com/echo123skype

Page of 583 650

If you click on the URL above, you might see something like the
following (if you’re using Google Chrome on Windows):

Step 3: Generate the QR Code
Now take that generated URL — which will actually work if you have
the desktop version of Skype installed for Windows or Mac — and
generate a working QR code from it.

Check that the shortened URL works in your web browser; the link
should launch Skype.

There is an abundance of choice when it comes to ways of
generating QR codes; free tools exist all over the Web.

Below are a couple of free generators:

• QR Stuff (online tool) - https://www.qrstuff.com/

• QREncoder (Mac App) - https://itunes.apple.com/us/app/
qrencoder/id452695239?mt=12

Page of 584 650

https://www.qrstuff.com/
https://itunes.apple.com/us/app/qrencoder/id452695239?mt=12
https://itunes.apple.com/us/app/qrencoder/id452695239?mt=12
https://itunes.apple.com/us/app/qrencoder/id452695239?mt=12

After you’ve generated your QR code, test it. Download one of the
available applications for your mobile device (if you don’t already
have one) and take a snapshot of the QR code you’ve produced.

Below are some free QR-reader products for mobile platforms:

• Scan (iOS) - https://itunes.apple.com/us/app/scan/id411206394?
mt=8

• QR Droid (Android) - https://play.google.com/store/apps/
details?id=la.droid.qr&hl=en

• QR Code Scanner Pro (Blackberry)

What should happen, if you followed the instructions correctly and if
you’ve got the Skype app installed, is this:

1. Your QR code will be identified by the QR reader app

2. The QR reader app will notice that the QR code contains a URL
(thus it will skip the compatibility quirks of the readers)

3. The TinyURL link will open in the default browser

4. It will redirect to the Skype-call URI scheme and launch Skype

Pretty amazing stuff for one clever image!

Page of 585 650

https://itunes.apple.com/us/app/scan/id411206394?mt=8
https://itunes.apple.com/us/app/scan/id411206394?mt=8
https://play.google.com/store/apps/details?id=la.droid.qr&hl=en
https://play.google.com/store/apps/details?id=la.droid.qr&hl=en
https://play.google.com/store/apps/details?id=la.droid.qr&hl=en

The only thing left to do with your wonderful creation is to upload it
to the Web (as I have with the finished example below). I
recommend, as a best practice, that you consider providing a link to
the URL being snapped in the QR image itself (for desktop users).

Beyond that, you could spruce up your QR codes with a bit of color
or some limited artwork if you’re feeling extra creative.

The Finished QR Code

The above QR code will call echo123 on Skype if you have the app
installed.

Conclusion
The power of this technique rests in the opportunity it gives designers
and developers. A URI scheme exists between app developers and
the browsers that support them (luckily, that’s all of them!).

Using a simple redirect (provided by you or a third party) and these
already existing and well-supported features, you can launch
applications, interact via query codes, execute JavaScript and do all
sorts of wonderfully creative things.

QR codes are being increasingly adopted and have never been more
widely used. With this single technique you can break past most
existing limitations.

Page of 586 650

Sources:

• https://en.wikipedia.org/wiki/QR_code

• http://web.archive.org/web/20110724083725/http:/
www.ianr.unl.edu/internet/mailto.html

• https://developer.apple.com/library/content/featuredarticles/
iPhoneURLScheme_Reference/PhoneLinks/PhoneLinks.html

• https://developer.apple.com/library/content/featuredarticles/
iPhoneURLScheme_Reference/SMSLinks/SMSLinks.html

• https://en.wikipedia.org/wiki/
Internet_Relay_Chat#URI_scheme

• https://en.wikipedia.org/wiki/Feed_URI_scheme

• https://www.skype.com/en/developer/create-contactme-
buttons/

• http://juberti.blogspot.co.uk/2006/11/gtalk-uri.html

• https://en.wikipedia.org/wiki/Yahoo!_Messenger#URI_scheme

• https://en.wikipedia.org/wiki/AIM_(software)#URI_scheme

• https://tinyurl.com/

• https://bitly.com/

• https://is.gd/

Page of 587 650

https://en.wikipedia.org/wiki/QR_code
http://web.archive.org/web/20110724083725/http:/www.ianr.unl.edu/internet/mailto.html
http://web.archive.org/web/20110724083725/http:/www.ianr.unl.edu/internet/mailto.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/PhoneLinks/PhoneLinks.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/PhoneLinks/PhoneLinks.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/SMSLinks/SMSLinks.html
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/SMSLinks/SMSLinks.html
https://en.wikipedia.org/wiki/Internet_Relay_Chat#URI_scheme
https://en.wikipedia.org/wiki/Internet_Relay_Chat#URI_scheme
https://en.wikipedia.org/wiki/Feed_URI_scheme
https://www.skype.com/en/developer/create-contactme-buttons/
https://www.skype.com/en/developer/create-contactme-buttons/
http://juberti.blogspot.co.uk/2006/11/gtalk-uri.html
https://en.wikipedia.org/wiki/Yahoo!_Messenger#URI_scheme
https://en.wikipedia.org/wiki/AIM_(software)#URI_scheme
https://tinyurl.com/
https://bitly.com/
https://is.gd/

Why We Still Need Web-safe Fonts
During the early days of the Web, there wasn’t a standard font that
could be rendered across all platforms. However, some fonts — like
Arial, Helvetica, and Times New Roman — were more likely to be
installed in a person’s computer. These popular system fonts are
called Web-safe fonts. It was the best practice in web design to stick
to them.

Things have changed. It’s now safe to use Web fonts — a technique
for rendering any remote font file in a web page using @font-face.
This give us more creative freedom and a much wider range of font
options.

The @font-face rule has been around for close to 13 years, first seen
and supported in Internet Explorer 5.5[1].

And @font-face has been formally included in the most recent version
of W3C’s CSS standards (CSS3) — it was taken out in CSS2.1 — and so
modern browsers (e.g. Chrome, Safari, IE, and Firefox) support the
rule.

And with services like the free Google Fonts API, implementing Web
fonts is easy. For instance, using the Google Fonts web service, it
takes two lines of CSS to render even a relatively unknown font such
as Bigelow Rules in the vast majority of browsers:

@import url(http://fonts.googleapis.com/css?
family=Bigelow+Rules);
body { font-family: 'Bigelow Rules'; }

Page of 588 650

But even with near-perfect support of the @font-face rule, as a good
practice, we should still use CSS font stacks. Moreover, our CSS font
stacks should still include Web-safe fonts as well as generic font
families like sans-serif and serif.

For example, even if we were to use the most popular font on
Google’s Web font service (which is currently Open Sans), we should
still use a CSS font stack that includes similar Web-safe fonts, with the
last declaration in the stack being a generic font family (sans-serif in
the case of Open Sans):

body {font-family: "Open Sans", "Arial", "Helvetica", sans-serif; }

Page of 589 650

In Chrome, this is the fallback-rendering sequence:

As shown above, using a good font stack assures us that we are
gracefully degrading our HTML text in case our chosen font is for
some reason unable to load.

Why We Still Need a Web-safe Font Stack
Web-safe fonts and CSS font stacks seem like outdated Web design
practices, especially since @font-face has great support.

Right now close to 90% of the Internet’s users use a browser that
supports @font-face[2].

But if you’ve ever considered dropping your CSS font stacks, below
are a few reasons that might change your mind.

Page of 590 650

Incomplete Fonts
If certain characters in your font are not available, the browser will
attempt to render those unavailable characters using the next font in
the stack. But if you don’t have a font stack, it will use the browser’s
default standard font.

For instance, the Libre Baskerville font doesn’t have the ™ character.

The first example below shows how the missing character renders in
Chrome without a font stack, while the second example stacks "Times
New Roman" and serif in the style rule:

At least with a good font stack, the ™ character looks similar to the
preferred Libre Baskerville font.

Page of 591 650

Network Issues
Loading a remote font using @font-face requires an Internet
connection. If the web server responsible for serving the font is
unavailable or is down for maintenance, the browser will use its
default standard text, unless you specify a Web-safe font in your CSS
font stack.

For Google Chrome, the standard text (on Windows) is "Times New
Roman". This can be bad news if we were using a sans-serif font, and
the web server or the content delivery network where the font file is
located goes down.

For example, check out this mockup of a web design that uses the PT
Sans font:

  

Page of 592 650

If our font stack didn’t have Web-safe fonts in the stack and a network
interruption happened, our web page would render like this (in
Chrome):

The web page looks completely different because Times New Roman
greatly affects the visual message of the design.

But if we used a font stack that included Web-safe fonts, we can
mitigate some of the aesthetic issues that come with network
problems.

Using the font stack:

font-family: "PT Sans", "Helvetica", "Arial", sans-serif;

Page of 593 650

We are able to lower the visual impact caused by a network
interruption:

@font-face Can Be Turned Off Client-Side
Some web browsers provide the option to disable the downloading
of font files. In most cases, disabling remote font files in a web
browser is obfuscated, but it’s possible. Here’s a forum post for
turning off remote font downloading in Firefox and Chrome, and
here’s one for Opera.

Why would someone want to disable remote fonts? To speed up
web page load times, which is especially desirable for Internet users
who have slow Internet connections.

To illustrate how Web fonts impact Web performance, let’s use a
display font such as "Lobster Two".

Page of 594 650

The following markup was used to test the Lobster Two payload
locally using an HTML document called "lobster-two-payload.html":

<html>
<head>

<link href='http://fonts.googleapis.com/css?
family=Lobster+Two:400,400italic,700,700italic'
rel='stylesheet' type='text/css'>
<style>
body { font-family:"Lobster Two"; }
</style>

</head>
<h1>Display Font</h1>

</html>
The test conditions are a broadband Internet connection and an
unprimed cache (meaning that the browser cache was cleared for
each test).

#1 result. Total time: 972ms

Page of 595 650

#2 result. Total time: 1.61s

#3 result. Total time: 1.36s

Page of 596 650

In the condition tested, it would take an average of 1.3 seconds to
render the <h1> tag fully for someone who has an unprimed cache.

This means staring at a blank page for 1.3 seconds before the user can
read the text, because Chrome’s default behavior is to show no text
while the font is still loading[3].

Consider that 1.3 seconds is the average load time using a broadband
connection to download the font files from Google’s servers. Imagine
how long it would take in less-than-ideal situations, such as slow
mobile networks and using a shared-hosting server to serve the font.

Without the Web font, the same document would finish rendering in
an average of only 0.012 seconds, which means the font increased the
load time by 10,733%. That is a hefty price to pay for rendering a
novelty display font that’s not functional enough to be used for critical
website content. That’s why some users choose to disable remote
font files from loading.

If we want to gracefully degrade our web design in situations where
the user has chosen to disable remote font files, we should use Web-
safe fonts in our font stack.

It must be noted here that you don’t have to load the entire font
family. And if you use the Google Font service, you can selectively
load just the font variations you need.

Page of 597 650

Web-safe fonts = Cheap and Easy Graceful
Degradation
Though it’s rare, @font-face isn’t supported in a few web browsers,
especially old ones.

Earlier, I mentioned that 90% of Internet users use a browser that
supports @font-face.

Not having a font stack that includes Web-safe fonts and a generic
font family means that we aren’t controlling how our web design
degrades for at least 10% of the Internet’s users.

The time and effort required to use a simple CSS font stack that
includes Web-safe fonts is very small, so there’s little reason not to
continue doing it.

References
1. The SitePoint CSS reference for @font-face has a table showing

@font-face as being supported in Internet Explorer 5.5+.

2. According to The Can I use @font-face Web fonts
compatibility table, 89.84% of the Internet population uses a
browser that has full or partial @font-face support. This data is
from StatCounter Global Stats, November 2013.

3. See the description of the browser-specific Web font
rendering behaviors on the Google Developers site. This is
outdated because as of Firefox 4 (officially released March
2011), loading Web fonts now behave similar to WebKit-based
browsers.

Page of 598 650

Sources:

• https://en.wikipedia.org/wiki/Web_typography#Web-
safe_fonts

• https://developers.google.com/fonts/

• https://www.techpowerup.com/forums/threads/disabling-
web-fonts-in-mozilla-firefox-and-google-chrome.184198/

• https://caniuse.com/#feat=fontface

• http://gs.statcounter.com/

• https://developers.google.com/fonts/docs/
technical_considerations

• https://www.paulirish.com/2009/fighting-the-font-face-fout/
#update2011

Page of 599 650

https://en.wikipedia.org/wiki/Web_typography#Web-safe_fonts
https://en.wikipedia.org/wiki/Web_typography#Web-safe_fonts
https://developers.google.com/fonts/
https://www.techpowerup.com/forums/threads/disabling-web-fonts-in-mozilla-firefox-and-google-chrome.184198/
https://www.techpowerup.com/forums/threads/disabling-web-fonts-in-mozilla-firefox-and-google-chrome.184198/
https://caniuse.com/#feat=fontface
http://gs.statcounter.com/
https://developers.google.com/fonts/docs/technical_considerations
https://developers.google.com/fonts/docs/technical_considerations
https://www.paulirish.com/2009/fighting-the-font-face-fout/#update2011
https://www.paulirish.com/2009/fighting-the-font-face-fout/#update2011

15 HTML Questions for Testing Your
Knowledge
Think you know HTML? Most developers probably feel they have a
good handle on modern Web standards. It's with this in mind that I
offer you a challenge.

Below you'll find some HTML questions that will test your familiarity
and understanding of the markup language. And if you're conducting
job interviews, you can use these questions to gauge a candidate's
knowledge of the Web's standard markup language.

You will also find questions about closely-related markup languages
and standards such as XML, XHTML, and microformats in order to
really test your mettle.

There isn't a time limit or score-tracking for this "quiz", so take your
time. Then, share your results in the comments.

How well do you know HTML?

Beginner Questions
Question 1

What's the name of the main international standards body that
publishes HTML specifications?

Answer: World Wide Web Consortium (W3C).

The W3C was formed in October 1994. You can find the current
recommended HTML specs at w3.org, the official site of the W3C.

Question 2

How many HTML heading levels are there?

Answer: 6.

The HTML heading elements are h1, h2, h3, h4, h5, and h6. You can
use these elements to create a hierarchical outline of the contents
of an HTML document.

Page of 600 650

Question 3

What's wrong with the following HTML markup?

<p style"font-size:10px;">Copyright 2015</p>

Answer: The style attribute is missing an equals (=) sign.

But, did you know that under the current HTML standards, the
double-quotes (") above are optional? As long as the attribute
value has no spaces, you can drop the double-quotes. Thus, the
following is valid HTML markup:

<p style=font-size:10px;>Copyright 2015</p>

Learn more about the unquoted attribute value syntax in section
8.1.2.3 Attributes of the HTML5 specs.

Question 4

Which version of Internet Explorer was the first to natively support
new HTML5 elements?

Answer: Internet Explorer 9 (IE9).

IE9 was released in March 2011. IE9 was the first to support new
semantic HTML elements such as article and section, as well as
canvas and inline SVG support, and more.

Question 5

What is the name of the metadata that allows you to set a value of
initial-scale=2, causing a page to zoom to twice its natural size?

Answer: viewport.

In the following example, the viewport meta tag (as it's commonly
called) is used to specify that the zoom level must be twice the
device's width:

<meta name="viewport" content="width=device-width, initial-
scale=2">

The viewport meta tag is not a standard metadata name for the
meta element. However, it is well-supported by browsers.
Quirksmode has a good guide on the viewport meta tag.

Page of 601 650

Question 6

What's the name of the microformat in the following example? Fill in
the blank (???).

52.48, <span
class="longitude">-1.89

Answer: geo.

geo is a microformat designed for semantically marking up
geographic coordinates in HTML and other standard markup
languages. Read more about the geo format in the Geo
Microformats Wiki.

Question 7

What markup language do RSS, Atom and OpenSearch use?

Answer: Extensible Markup Language (XML).

XML is short for Extensible Markup Language. Learn more about
the language by reading XML's W3C specs.

Question 8

What's the name of the new HTML5 element that begins with the
letter K?

Answer: keygen.

The keygen element is for marking up a control element that
generates a public-private key pair, which is typically used for
encryption.

Intermediate Questions
Question 9

If a hyperlink points to a resource containing copyright information
about the current web page's main content, what link type can you
specify on the hyperlink?

Answer: license.

The license link type can be used as follows:

<main>

Page of 602 650

Copyright info.

</main>

Learn more about the license link type (and other hyperlink link
types) by reading this guide.

Question 10

According to Microdata and Schema.org vocabulary, what's the name
of the microdata boolean attribute which indicates that the element's
descendants may contain information about the element?

Answer: itemscope.

When the itemscope attribute is specified on an HTML element, it
informs search engines and web browsers that descendants of the
HTML element may be carrying machine-readable information
about the HTML element. Search engine like Google, Microsoft,
and Yahoo! use microdata markup to improve their search results.

Question 11

What is the HTML5 element that represents a line break opportunity?

Answer: wbr.

The wbr element indicates a location in the document where
there's a good opportunity to render a line break if needed.
Quirksmode describes the utility of the wbr element if you are
curious about this obscure HTML tag.

Question 12

What attribute can you use to specify a regular expression which
describes a valid value for an input element?

Answer: pattern.

The pattern attribute exposes a client-side, machine-readable
description of how an input element is being validated. This, in
turn, can be used by software such as assistive technologies to
help its users understand why the form submission was not
successful. The attribute can also be used for client-side input
validation logic in conjunction with JavaScript.

Page of 603 650

Expert Questions
Question 13

According to the HTML5 W3C Recommendation, how many states/
values does the type attribute have?

Answer: 18.

You can see all states of the type attribute in section 4.10.5.1 States
of the type attribute.

Question 14

Which HTML element can be used to express and annotate the
pronunciation of East Asian characters?

Answer: ruby.

Ruby characters are annotative characters typically associated with
East Asian (e.g. Japanese and Chinese) typography.

Here is an example from the HTML5 specs which uses the ruby
element:

<ruby>⽇日<rt>に</rt></ruby><ruby>本<rt>ほん</rt></ruby>

Question 15

Which ARIA landmark role does the HTML5 footer element default to,
if the footer element isn't inside an article or section element?

Answer: contentInfo.

ARIA landmark roles are regions of a web page that contain
navigational aids. Navigational aids are things such as a website's
navigation menu or breadcrumb navigation. The contentInfo role
is one of these standard landmark roles.

The contentInfo role states that the element contains information
about the web page. As defined in section 3.2.7.3 Strong Native
Semantics, if the footer element isn't inside an article or a section
element, its role is implicitly set to contentinfo.

Page of 604 650

How Did You Do?
Don't feel bad if you didn't get them all right. I'd be quite surprised if
anyone got the right answer for every single question. For the
questions you managed to answer correctly, congratulations!

Sources:

• https://www.w3.org/TR/html5/

• https://en.wikipedia.org/wiki/Internet_Explorer_9

• https://www.quirksmode.org/mobile/metaviewport/

• http://microformats.org/wiki/h-geo

• https://www.w3.org/TR/REC-xml/

• https://schema.org/docs/
gs.html#microdata_itemscope_itemtype

• https://www.quirksmode.org/oddsandends/wbr.html  

Page of 605 650

https://www.w3.org/TR/html5/
https://en.wikipedia.org/wiki/Internet_Explorer_9
https://www.quirksmode.org/mobile/metaviewport/
http://microformats.org/wiki/h-geo
https://www.w3.org/TR/REC-xml/
https://schema.org/docs/gs.html#microdata_itemscope_itemtype
https://schema.org/docs/gs.html#microdata_itemscope_itemtype
https://www.quirksmode.org/oddsandends/wbr.html

15 CSS Questions to Test Your
Knowledge
How well do you know CSS? Test your knowledge by trying to
answer the CSS questions in this post.

The questions are divided into three categories:

• Basic CSS questions

• Intermediate CSS questions

• Advanced CSS questions

This set of CSS questions is a follow-up to our previous collection of
HTML questions.

Basic CSS Questions
Question 1

Which of the following is NOT a valid border-style property value?

• dotted

• inset

• glazed

• groove

• solid

Answer: glazed

You can see all the border-style property values by reading the
"4.2. Line Patterns: the ‘border-style’ properties" section in W3C
CSS Backgrounds and Borders Module Level 3 specs.

Page of 606 650

Visual guide of border-style property values. Source: w3.org

Question 2

Which of the following is NOT a valid CSS length unit?

• cm

• dm

• em

• mm

Answer: dm

cm and mm are absolute length units. em is a font-relative length.

Question 3

What is the CSS selector which allows you to target every element in
a web page?

Answer: The universal selector (*).

An example: The following style rule uses the universal selector to
set the margin and padding of all HTML elements to zero:

* {
margin: 0;
padding: 0;

Page of 607 650

}

Question 4

Which two CSS properties allows you to hide an element but still
maintain the space it occupies in the web page?

Answer: visibility or opacity

There are several ways to hide an HTML element with CSS.

Setting the visibility property of the element to hidden will hide
the element. The element will still occupy space equal to its
geometric size in the web page. For example, if the hidden
element’s dimensions are 100x100px, you will see an empty
100x100px space in the area where the element is located. Hiding
an element can also be accomplished by assigning opacity: 0 to
an element.

Hiding an element without maintaining the space it occupies in the
web page can be done by setting the element’s display property
to none. Setting display to none renders the element as though it
doesn’t exist.

Question 5

There are 16 basic color keywords in CSS. Which of the following are
NOT basic color keywords?

• olive

• fuchsia

• cyan

• aqua

• maroon

Answer: cyan

cyan is a valid color keyword. But it’s not one of the basic color
keywords.

The cyan color keyword is documented as being part of the
extended color keywords.

Page of 608 650

Question 6

The font-style CSS property has four different valid values. Three of
these values are inherit, normal, and italic. What is one other valid
value?

Answer: oblique

Read the font-style docs on MDN to learn more about this CSS
property.

Question 7

Which of the following two selectors has a higher CSS specificity?

• Selector 1: #object h2::first-letter

• Selector 2: body .item div h2::first-letter:hover

Answer: Selector 1: #object h2:first-letter

The specificity value of Selector 1 is 102. The specificity value of
Selector 2 is 24.

Intermediate CSS Questions
Question 8

What is the ideal order of the following pseudo-class selectors in a
stylesheet?

• :active

• :hover

• :link

• :visited

Answer

• :link

• :visited

• :hover

• :active

An element can match multiple pseudo-class selectors at the same
exact time. That is the reason why the order of the pseudo-classes

Page of 609 650

above is crucial. We know that if two selectors are equal in
specificity, by default, the selector farther down the stylesheet
wins.

One situation where you can clearly see this issue is via a hyperlink
element. Suppose that you hover your mouse pointer on the link,
and then click on the link without moving your mouse afterwards.
This situation means the link matches both :hover and :active
selectors.

So if the :active style rule is above the :hover style rule — for
instance — users will never get to see the :active style rule applied.
This is because the :hover style rule will always overwrite it.

You can remember the ideal order by memorizing the acronym,
LVHA.

Link → Visited → Hover → Active

Question 9

Which of the following CSS properties DOES NOT influence the box
model?

• content

• padding

• margin

• outline

• border

Answer: outline

Here’s a portion of the outline property’s specifications:

“The outline created with the outline properties is drawn “over” a
box, i.e., the outline is always on top, and does not influence the
position or size of the box, or of any other boxes. Therefore,
displaying or suppressing outlines does not cause reflow or
overflow.”

Page of 610 650

Question 10

When using media queries, which of the following is NOT a valid
media type?

• tv

• all

• voice

• print

• braille

• tty

• embossed

Answer: voice

You can find all the valid media types in the Media Queries W3C
specs. voice is not a valid media type. Though there is a speech
media type.

Question 11

There are five generic font family values that can be assigned to the
font-family property. Three of them are listed below. What are the
other two generic font family values?

• serif

• sans-serif

• monospace

Answer: cursive and fantasy.

Question 12

What is the color keyword that will always be equal to the calculated
color property value of the selected element/elements?

Answer: currentColor

Below is an example where the background-color and the border
color will be equal to the color property value of .box elements:

.box {

Page of 611 650

color: green;
background-color: currentColor;
border: 1px dashed currentColor;

}
The benefit of using the currentColor keyword is that we only
need to change the color value in one place. We can just change
the value of the color property, and the change will cascade to the
other properties. This keyword works much the same way as CSS
variables.

Advanced CSS Questions
Question 13

Which of the following is NOT a valid CSS unit?

• ch

• turn

• px

• ems

• dpcm

• s

• hz

• rem

Answer: ems

ch and rem are font-relative length units.

turn is an angle unit.

px is an absolute length unit.

dpcm is a resolution unit.

s is a time unit.

hz is a frequency unit.

Page of 612 650

Question 14

Which of the following color keywords has NOT yet been proposed
in a W3C specification?

• blanchedalmond

• dodgerblue

• peachpuff

• orchidblack

• navajowhite

• tomato

Answer: orchidblack

Question 15

What is the CSS at-rule that can allow you to define the character
encoding of a stylesheet?

Answer: @charset

UTF-8 should always be used as your CSS file’s character
encoding. If this is the case, then you don’t need to declare a
@charset rule.

Sources:

• https://www.w3.org/TR/css-backgrounds-3/#the-border-style

• https://www.w3.org/TR/css3-values/

• https://www.w3.org/TR/css-color-3/

• https://www.w3.org/TR/css3-mediaqueries/

• https://www.w3.org/TR/css-fonts-3/#generic-font-families

• https://www.w3.org/International/questions/qa-css-charset

Page of 613 650

https://www.w3.org/TR/css-backgrounds-3/#the-border-style
https://www.w3.org/TR/css3-values/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-fonts-3/#generic-font-families
https://www.w3.org/International/questions/qa-css-charset

Web Agility: Pushing for Performance
In a situation that resembles “life imitating art, and art imitating life”,
the Web is suffering an obesity epidemic. Despite knowing that
performance is critical to design, pages are getting more HTTP
requests, file sizes are expanding beyond Internet speed averages;
and with the rise of frameworks, we’re often finding ourselves using a
30kb JavaScript file to justify 1kb of effects.

With this in mind, we’re going to examine the usefulness of
performance budgets, how they could benefit you, how to set one
up, what variables you should target, and why you should consider
using them in your future projects. If you design or develop websites
for clients, the results could win new customers or sales. If you run
your own site, you’ll get many benefits too, especially if you run a
popular site that handles millions of page views.

Performance Budgets
The idea behind setting performance budgets is a sound one.
Because small, agile sites load faster than heavy ones, trimming the fat
and preventing harmful waste has noticeable benefits to a sites agility,
and potentially even it’s running costs. Being able to show clients the
numbers to back the findings up could really help you justify the value
you bring to client work. Therefore, having such a process could well
be worth the added effort.

Page of 614 650

Of course, setting such targets and restrictions is easier said than
done. Anyone who has been on a diet will tell you that temptation is
never far away, and it’s likely that because of this, few designers have
felt comfortable enough to tighten their belts or commit to such
changes. Despite constant warnings that surplus frameworks, web
fonts, and other luxuries can clog up a site; our lust for aesthetics
often result in sites that look minimalistic and free of bloat, but suffer
the same problems as more feature rich designs.

Setting Goals and Targets
To create a performance budget, you first need to identify the areas
which can affect a sites ability to function, one obvious example of
this is file size. While some sites could cope with only 50KB available
to them, larger sites will of course require scaling up. If you are trying
to slim down an existing site, trying to get a 10-25% reduction is
entirely possible, and could make a huge difference.

• Small site: Aim for 100KB total size or 25KB reduction.

• Medium site: Aim for 250KB total size or 50KB reduction.

• Large site: Aim for 500KB total size or 100KB reduction.

Another variable that can ultimately affect performance is a sites
loading time. Users will often give up if nothing has happened within
3-5 seconds, so you should aim to boost the page speed. However,
with connection speeds varying consistently, you need to be careful
not to assume that what is fast for you will translate to your users.

• Basic HTML & CSS: Load within 1 second.

• JavaScript and animations: Load within 2 seconds.

• Images and media: Load within 3 seconds.

You set performance budgets to a range of scenarios. Depending on
the work you’re being asked todo, or how it will best fit into your
workflow, you can use one of the following methodologies to set
your limits or reduction ratios. If you’re going to be setting budgets on
a continual basis, it might be worth setting up a spreadsheet to track

Page of 615 650

your progress, and potentially see where the majority of your savings
originate.

• Per site: Best used for calculating file size averages, say the ratio
of images to content.

• Per page: Best used for calculating page loading times, and
individual file size offenders.

• Per asset: Best used for setting goals relative to the weight or
loading time of a single file.

Going on A Data Diet
When calculating performance goals, try to be realistic as there is only
so much you can do before a sites quality and content will suffer.
Once you have worked out what needs to be done, feel free to use
the below tips and tricks to help you shift some of the excess weight.
Keep in mind that certain actions will yield bigger results than others,
for example, removing a couple of large images will do more than
most markup tweaking.

File Size Variables:

• Bloated markup: Can you reduce the amount of code required
to achieve a goal? Cleaning your HTML, CSS, JavaScript, and
server-side scripts will make a difference. Minifying your code
will also reduce the weight.

• Redundant code: If you have duplicate CSS properties, unused
code snippets, code comments, pages of pointless content, or
lots of frameworks that aren’t necessary, remove them to save
additional kilobytes.

• CSS and JavaScript: This tip dates back to the web standards
movement. Get your CSS and JavaScript out of the HTML, and
into separate files. It will save reloading the resources on every
page visited by users.

• Feature creep: Does the site have any functionality that is rarely
used? If you don’t need it, get rid of it. Just remember to ask

Page of 616 650

your customers if they object beforehand, otherwise you could
upset some visitors.

• Code Compression: If you don’t have GZIP enabled on your site,
ensure that you do it right away. While it will increase the
pressure on your servers, the file size and speed savings are
well worth it.

• Images and media: This is the area where much of a sites bloat
comes from. Unfortunate as it may be; audio, video and images
are very bandwidth hungry and data costly. If it’s not necessary
dispose of it.

• Conditional Code: Using media queries, JavaScript and CSS
selectors, you can lazy load resources. Retina images can be
swapped within stylesheets, and video quality can be adjusted
using conditional JavaScript.

• Resource Optimization: For images you can’t do without, use
ImageOptim or SmushIt to squeeze every redundant byte from
your visuals. For media, increase the compression levels for data
savings.

Time Based Variables:

• Server speed: Picking a host that has good performance
reviews and buying the right hardware to match visitor levels
matters. Most hosts allow you to add or remove resources to
cope with spikes in demand.

• HTTP requests: Putting raster graphics in sprites, using icon fonts
over vector images, and bundling all of your CSS or JavaScript
into a single cacheable files will reduce the queue for resource
requests.

• Inlining resources: Do you have any tiny assets that you don’t
want to sprite as it only has a single page or instance use?
Rather than making another HTTP request, embed it in the HTML
or CSS using base64.

• DNS requests: When you first request a resource, the browser
has to perform a domain lookup. Reduce the number of sites

Page of 617 650

hosting your content, and use HTML prefetching to help reduce
the wait.

• Load latency: Get your JavaScript to the bottom of the page,
and keep your CSS in the head. You want the layout to be
immediately visible, and scripts shouldn’t actively prevent
content from loading up.

• Superficial speed: If you want to make your site visually look like
it’s loading content quickly, ensure your JPEG’s are set to
“progressive” loading, and your PNG and GIF files should be set
to “interlaced”.

• Code rendering: Ensure the HTML and CSS validates, in worst
case scenarios it could affect page rendering speeds.
Additionally, keep CSS selectors succinct and direct to avoid
excessive repainting and overwrites.

• Animation issues: While animated effects via CSS3 and JS can be
pretty, constant DOM redraws, lagging from heavy transitions
and the code bloat can cause performance to suffer. Use at
your own risk.

• Script bottlenecks: htaccess, JavaScript, and server-side code
can cause issues. Investigate where delays occur using tools like
YSlow, Google PageSpeed and Firebug, it could reduce lagging
and outages.

• Caching and Offline storage: If content can be cached, it should
be. Set expiry headers in htaccess and reference things like
jQuery from their site. If users can load data locally, it saves
further downloads.

• Geographical delivery: Using a CDN (content delivery network)
will reduce the distance data has to travel to a users computer,
and it will also spread the load from your sites server. Both will
reduce loading times.

• Progressive loading: Sites feel like they load faster if something
reaches the user other than a blank screen. Try to

Page of 618 650

asynchronously load resources like fonts and progressively
disclose content post the initial page load.

Real Business Benefits
After reading through the list of performance tips, and trying to work
out how much time and data you should aim to save, you may be
wondering about the real world benefits of such extreme budgeting
techniques.

For clients or site owners, a more agile design places less strain upon
the hardware and bandwidth allowances of a host, thus huge financial
savings could be made on popular sites. With reduced running costs,
an additional “green” sustainability benefit exists as less time will be
spent by users loading pages and thus energy waste will be reduced.
The improvement in load times may also encourage visitors to use the
site more frequently.

For customers, the reduced waiting time will satisfy those on low
quality or throttled connections, but for those who suffer bandwidth
caps or expensive roaming charges or data rates, it could save visitors
a fair amount of money along with electricity savings and perhaps a
few less charge cycles of their smartphone battery.

Page of 619 650

The Sustainable Future
As the possibilities of the Web expand, so has it’s waistline. By fighting
the trend of page bloating and by taking care only to include what a
site really needs, and eliminating the wasteful aspects of your design,
you can help yourself, your clients and your customers. With
performance remaining high on the user-experience agenda, it will
be those sites that reduce the burden upon visitors that gain a
competitive edge against similar services.

Page of 620 650

A Guide to Styling with SVG
SVG has a lot going for it - not only as an image format, but as an
important part of any responsive design workflow. It compresses
well, it’s accessible, it’s got decent browser support (supporting
graceful fallbacks), it flexes to changes in size without losing clarity,
and (importantly for this article) it can be manipulated with CSS and
JavaScript.

The application of CSS to SVG images has a lot in common with how
you’d style an HTML document, this article will aim to address the
differences and similarities that exist. In addition, I’ll outline a few best
practices and use-cases to make the most of your sites vector
graphics.

Declaring and Editing Styles
Before we get started, it's important to note that SVG wasn’t designed
with a requirement to separate structure and style. Because of this,
there are still occasions when CSS must be added to the image using
attributes or stylistic elements. Until SVG 2.0 is complete, this is
something we have to put up with (like table based layouts in HTML
emails). With this in mind, let's examine the four methods used to style
SVG images.

Method #1 (Elements) - You probably remember the days of using
, <I>, and <U> in HTML for presentational purposes, this practice
still exists within SVG - one example being for SVG animation (using
the SMIL specification). You can use either CSS animations or
JavaScript in it’s place, but it’s still worth checking out SMIL as it’s well
supported and more powerful than CSS animation and transitions
alone.

<animate />

Method #2 (Attributes) - Just like HTML4, attributes can be used to
declare element styles like width="200px" (or style="property: value;"
for compatible CSS). While SVG 2.0 will allow more attributes to be
globally controlled using CSS, the specification isn’t at recommended

Page of 621 650

stage (and browser support isn’t complete). Because of this, attributes
(using case-sensitive name-value pairs) will still be required on some
elements.

<circle cx="30" cy="50" fill="black" height="120" r="20"
width="100%" />

Method #3 (Style tags) - Grouping compatible CSS in <style> tags is
supported both within and outside of the SVG file. Outside it’s treated
the same as regular CSS, though it will only be applied if the SVG
image is embedded into the HTML (not if you use IMG elements or
CSS background images). Inside the SVG file, you’ll need to wrap the
style with CDATA declarations to ensure it’s parsed correctly (due to
SVG being XML).

<style type="text/css">
<![CDATA[

polygon { fill:blue; stroke:purple; stroke-width:1; }
]]>
</style>

Method #4 (Link tags) - As with <style> tags, you can link to external
CSS from outside and inside the SVG. Outside, you use normal <link>
tags in the HTML head or add the styles into your existing stylesheet.
As SVG has some non-standard styling properties, this will fail the
W3C CSS validator (browsers will render the contents fine). Inside, you
need to use a special declaration just below the DTD as we’re dealing
with XML.

<?xml version="1.0" standalone="no"?>
<?xml-stylesheet type="text/css" href="style.css"?>

At-Rules, Selectors and Properties
CSS 2.1 At-rules like @media, @font-face and @import are widely
supported in SVG images (like “@media print” friendly graphics).
What’s really cool is that despite SVG1 predating CSS3, modern
browsers (and IE9+) already support embedded media queries. When
used in SVG, they use the dimensions of the image (not the page),

Page of 622 650

which is useful if you want an image to change (rather than scale)
when its physical dimensions are altered.

SVG also supports the same general selectors you’d find in CSS 2.1.
While it also supports pseudo-classes like :first-child, :visited, :link
and :lang; the pseudo classes :hover, :active, and :focus will only work
if the SVG is directly embedded within the HTML (not as an or
background-image). Regarding CSS3 selectors and pseudo classes,
only :target (useful in SVG image sprites) has a mention in SVG2 (and
browser support is minimal).

Beyond selectors, the W3C provides a really handy index of
properties that are supported in SVG 1.1 and 2.0. Many of these are the
same as you’d find in CSS 2.1. However, while SVG 1.1 predates CSS3,
some SVG properties were later adopted by the CSS3 specification,
and are therefore already supported by browsers. SVG was quite
ahead of it’s time, and because of this, we have more flexibility than
we'd otherwise expect.

Page of 623 650

SVG 1.1 shares the following property/value pairs with the CSS
specification: clip (CSS3), clip-path (CSS3), color-profile (CSS3), cursor,
direction, display, font, font-family, font-size, font-size-adjust (CSS3),
font-stretch (CSS3), font-style, font-variant and font-weight, isolation
(CSS3), letter-spacing, mask (CSS3), opacity (CSS3), overflow, text-
decoration, text-rendering, unicode-bidi, visibility, word-spacing and
writing-mode (CSS3).

In SVG 2.0 height and width will also be declarable in CSS (rather than
as a SVG attribute), as will the SVG exclusive geometry attributes cx,
cy, r, rx, ry, x and y.

Some SVG properties (or elements) have names you likely won't
recognize, but in actuality serve a similar or identical purpose to an
existing CSS entity. I’ve included a handy list of these properties
below, explaining the element or property, and what CSS equivalent
it imitates. It can get a little confusing, so hopefully this list will help
you align your current CSS knowledge to the convention differences.

• <animate> = animation (CSS3)

• fill, flood-color, stop-color = background-color

• <pattern> = background-repeat

• stroke, stroke-linejoin, stroke-miterlimit = border

• stroke-width = border-width

Page of 624 650

• stroke-linecap = border-radius (CSS3) for lines

• stroke-dasharray, stroke-dashoffset = border-style

• <feOffset> (child of <filter>) = box-shadow (CSS3)

• <filter> & filter = filter (CSS3)

• kerning = font-kerning

• <linearGradient> = linear-gradient (CSS3)

• <radialGradient> = radial-gradient (CSS3)

• text-anchor = text-align

• glyph-orientation-horizontal and glyph-orientation-vertical =
text-orientation

• alignment-baseline, baseline-shift, dominant-baseline = vertical-
align

• Element order (first to last) = z-index (as there is no box model
like with CSS)

The following have no CSS equivalent, so you should acquaint
yourself with their usefulness by reading the specification: clip-rule,
color-interpolation, color-rendering, color-interpolation-filters, enable-
background (filter), fill-rule, lighting-color (filter).

Notable others with no CSS equivalent, but remain incredibly useful
include:

• image-rendering and shape-rendering (like text-rendering but
for the SVG image data).

• fill-opacity, flood-opacity, stop-opacity and stroke-opacity
(control alpha transparency on individual parts of a shape and
it’s color).

• marker (like marker-end, marker-mid and marker-start) - for
arrowheads in diagrams.

• pointer-events (control interaction effects like drag and drop)

It’s also worth noting that when SVG2 is finalized, SVG will be all
caught up with the CSS3 color module. Until then, SVG supports hex,

Page of 625 650

RGBA, the x11 “named colors” list, and the useful currentColor value
which inherits the value of the CSS color property within the SVG fill
property (if the SVG is embedded in your HTML), thereby eliminating
the need to duplicate color values in CSS (like the deprecated CSS2
system color palette).

Best Practices for Maintainable Code
Check your SVG files for redundancy, just like with HTML and CSS
there are probably improvements to be made. Like other Web
languages you can lint the file by removing whitespace and
comments. Ensure that caching and gzip are enabled on your server
for further compression based savings. Furthermore, run your SVG
images and sprites through the W3C validator, it supports SVG 1.1 and
will help identify common errors.

More space savings can be made by trying to separate style and
structure as much as is possible. With SVG2 still in development, you’ll
be restricted as to how much can be pushed into stylesheets, but it’s
worth doing what you can and revisiting the files later when it is
supported.

I would also avoid linking to external stylesheets from within the SVG
file as it could block the render path while it waits for the file to load

Page of 626 650

(the same reason most designers avoid @import in CSS). Better
options include grouping CSS within <style> tags in the SVG file (using
sprites when browser support is solid) or linking to the stylesheet
from within your HTML (if the SVG image is embedded).

Finally, a note on compatibility. SVG’s do have some issues between
browsers which can be easier to spot if you work in co-ordination
with a site like Can I Use. If you’re thinking of using SVG animations,
polyfills like Snap.svg and Raphael may be useful. Whatever you do
though, make sure your SVG images have a fallback, after all Internet
Explorer 8 will probably still be around for a little while longer (even
with Spartan around the corner).

Sources:

• https://www.w3.org/TR/SMIL/

• https://css-tricks.com/guide-svg-animations-smil/

• http://jeremie.patonnier.net/experiences/svg/media-queries/
test.html

• https://www.w3.org/TR/SVG/propidx.html

• https://www.w3.org/TR/SVG2/propidx.html

• http://petercollingridge.appspot.com/svg-editor

Page of 627 650

https://www.w3.org/TR/SMIL/
https://css-tricks.com/guide-svg-animations-smil/
http://jeremie.patonnier.net/experiences/svg/media-queries/test.html
http://jeremie.patonnier.net/experiences/svg/media-queries/test.html
https://www.w3.org/TR/SVG/propidx.html
https://www.w3.org/TR/SVG2/propidx.html
http://petercollingridge.appspot.com/svg-editor

Another 6+ Web Files to Help Improve
Your Website
I've previously examined web assets that while small in size can
improve your sites performance or user-experience. In this
concluding part to the trilogy, we'll once again examine some files
that don't take long to create, but can positively impact your visitors.

Quick Overview
Here is what we shall cover:

• RSS.xml, Atom.xml and Feed.opml

• iCal.ics

• Subtitles.vtt

• Manifest.json and Browserconfig.xml

• .htaccess

• Crossdomain.xml

Syndication XML Feeds
Everyone likes to stay up-to-date, whether it be with their favorite
blog, podcast or the news. Syndication feeds allow individuals to get
push notifications of updated content as it happens in the same way
that new tweets or instant messages are received.

All web browsers support at least one of the two syndication formats;
RSS and Atom (though both use XML as their publishing language).
They use very similar syntax and while neither is 100% dominant, RSS
tends to be the most used web-wide due to it's ubiquitous auto-
generation in CMS systems like Wordpress.

Page of 628 650

You can even group multiple syndication feeds into a bundle using a
specially formatted XML based outline language called OPML. Which
is great to introduce newbies to a network of sites you operate.

Creating the RSS.xml and Atom.xml files
Because RSS and Atom have very similar syntax, we are going to
create some basic syndication files in both formats at the same time.
So to begin, open a couple of blank documents in your favorite IDE or
text editor and save one as RSS.xml and the other as Atom.xml

Below is an example of a basic RSS container:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/terms"
xmlns:atom="http://www.w3.org/2005/Atom">

<channel>
<title>Six Revisions Feed</title>
<link>http://sixrevisions.com/</link>
<description>Web Design Tutorials, News and Articles</
description>
<copyright>Some Rights Reserved</copyright>
<dc:creator>Jacob Gube</dc:creator>
<dc:date>2015-10-24T00:00:00Z</dc:date>

Page of 629 650

<atom:link rel="self" href="http://sixrevisions.com/feed/
rss.xml" type="application/rss+xml" />

</channel>
</rss>

Below is an example of a basic Atom container:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Six Revisions Feed</title>
<id>http://sixrevisions.com/</id>
<subtitle>Web Design Tutorials, News and Articles</subtitle>
<rights>Some Rights Reserved</rights>
<author><name>Jacob Gube</name></author>
<updated>2015-10-24T00:00:00Z</updated>
<link rel="self" href="http://sixrevisions.com/feed/atom.xml"
type="application/atom+xml" />

</feed>

In order to keep things simple, I've used the Dublin Core within RSS to
give it equal footing with Atom in terms of descriptive elements. The
above (of course) is a very basic example and theres a LOT more that
you can add but if you just want to get up and running, it's a solid
boilerplate. There is space for The feeds title, a URL and description of
your site, copyright information, site author details, and when the feed
was last updated.

Once you've filled in the general information, we now need to add
entries for both feeds. The newest item should be at the top of the
list, placed directly after the self URL reference. You can repeat the
below entry and item tags as needed to build up your feeds.

Page of 630 650

An example of an RSS item:

<item>
<title>RSS Secrets</title>
<dc:creator>Jacob Gube</dc:creator>
<dc:date>2015-10-24T00:00:00Z</dc:date>
<guid>http://sixrevisions.com/?p=0000</guid>
<category>Development</category>
<link>http://sixrevisions.com/dev/article-000.html</link>
<description>Everything you wanted to know about RSS but
were afraid to ask.</description>

</item>

An example of an Atom entry:

<entry>
<title>Atom Secrets</title>
<author><name>Jacob Gube</name></author>
<updated>2015-10-24T00:00:00Z</updated>
<id>http://sixrevisions.com/?p=0000</id>
<category term="Development"/>
<link rel="alternate" href="http://sixrevisions.com/dev/
article-000.html" />
<content type="xhtml" xml:lang="en"><div xmlns="http://
www.w3.org/1999/xhtml"><p>Everything you wanted to know
about Atom but were afraid to ask.</p></div></content>

</entry>
There are tools which can build RSS and Atom files if you want a more
automated or user friendly route to syndication, though some of
these cost money or rely on third parties:

• Feedburner - http://feedburner.com/

• RSS Generator - http://rssgen.com/

• Feed Validator - http://feedvalidator.org/

• Feeder - http://reinventedsoftware.com/feeder/

• RSS Builder - http://www.softpedia.com/get/Internet/News-
Newsgroups-Blog-Tools/RSS-Builder.shtml

Page of 631 650

http://feedburner.com/
http://rssgen.com/
http://feedvalidator.org/
http://reinventedsoftware.com/feeder/
http://www.softpedia.com/get/Internet/News-Newsgroups-Blog-Tools/RSS-Builder.shtml
http://www.softpedia.com/get/Internet/News-Newsgroups-Blog-Tools/RSS-Builder.shtml
http://www.softpedia.com/get/Internet/News-Newsgroups-Blog-Tools/RSS-Builder.shtml

Once you've got your completed RSS and Atom files, you just need to
link to them from the head of your HTML documents:

<link rel="alternate" type="application/rss+xml" title="RSS Feed"
href="cache/rss.xml">
<link rel="alternate" type="application/atom+xml" title="Atom Feed"
href="cache/atom.xml">

Creating a Feed.opml file
If you own multiple websites, you probably have thought about the
possibility of building multiple RSS and Atom feeds at this point. With
this in mind I'd like to introduce you to the OPML format. OPML is built
upon XML and is intended for outlining lists of data, but it's especially
popular for aggregating lists of feeds, which is why I'm including it
here.

Page of 632 650

Below is an example of what the code should include:

<?xml version="1.0" encoding="utf-8"?>
<opml version="2.0">

<head>
<title>Six Revisions Network</title>
<docs>http://dev.opml.org/spec2.html</docs>

</head>
<body>

<outline type="rss" text="Six Revisions" xmlUrl="http://
feeds.feedburner.com/sixrevisions" htmlUrl="http://
sixrevisions.com/" title="Six Revisions" />
<outline type="rss" text="Design Instruct" xmlUrl="http://
feeds.feedburner.com/designinstruct" htmlUrl="http://
designinstruct.com/" title="Design Instruct" />

</body>
</opml>

As with all the files, you can build it using any text editor; though with
this you can give it any filename, put it in any location (preferably
alongside your feeds), and as with all XML files it contains a DTD
declaring it as such. Just like HTML it contains head and body
elements. Below the DTD you'll notice an OPML tag with a version
number stating the version of the specification it conforms to (this URL
is referenced in the docs tag in the head of the document).

Within the head you have space to include a title for your batch of
feeds, and within the body you have outline elements which
represent each feed being linked too. Because we're referencing RSS
feeds, there is an XML url and a HTML url for maximum compatibility. If
you're offering other types of content, only a URL attribute may be
necessary (instead of htmlUrl).

As with RSS and Atom, add a link to the head of your document:

<link rel="outline" type="text/x-opml" title="Network Feed"
href="http://sixrevisions.com/feed.opml">

Page of 633 650

iCal.ics
In a previous article I mentioned the benefits of vCard.vcf, the little file
which allows you to markup and produce business cards that work in
a variety of environments. The great thing is that there's also another
little file that does the same thing except for events. This file (iCal.ics)
allows you to set appointments and reminders via your default
calendar app.

iCal.ics comprises meta-data about events, dates, times; and can
include descriptions and comments which can be imported into
calendars on mobile and desktop platforms (which can be in-turn
read by personal assistants like Siri). While not supported in Web
browsers; when downloaded - calendar apps, email apps, and
cellphones can take advantage of the event information.

iCal also has it's own microformat (just alike vCard) which can be used
to semantically enhance pages, and with a browser extension, this
data can be either exported, used by web-apps, or imported into
third party services.

Page of 634 650

Creating a iCal.ics file
The first thing you need todo is create the iCal.ics file within your
favorite plain text editor (the filename is case insensitive). Inside
there's a few things every iCalendar must have, according to the
specifications:

• BEGIN:VCALENDAR and END:VCALENDAR to map the start and
end of the document (the same way we open and close HTML
files).

• VERSION: with a value of 2.0 (the latest edition).

• BEGIN:VEVENT and END:VEVENT to map the start and end of the
event that the calendar is going to make a note of.

Note: You can also add Journal and todo entries to your calendar
using BEGIN:VJOURNAL and BEGIN:VTODO.

Here is an example of a working iCal event:

BEGIN:VCALENDAR
VERSION:2.0
BEGIN:VEVENT
DTSTART:20151024T190000Z
DTEND:20151024T190000Z
SUMMARY:Six Revisions Meetup
END:VEVENT
END:VCALENDAR

The general syntax for iCal files is the same as for vCard files.
Directives and element references are all in uppercase followed by a
colon character.

DSTART and DTEND give the start and end dates of events. End dates
are optional (for ongoing events), times are optional too, and you can
make events repeat using the RRULE property.

It's also worth giving your event a description using the summary
property as apps will use this to alert users when the event is going to
take place.

Page of 635 650

Below are some of the additional directives you can use:

LOCATION: Six Revisions HQ
URL: http://www.sixrevisions.com/
ORGANIZER:MAILTO:jacob@sixrevisions.com

While iCal does have many additional directives and features, the
number of them in use or compatible with third party software is
limited (unlike vCard). Therefore I've limited the above to just the most
important ones that are frequently used.

Once you've finished your file, save it and add the below reference to
the <head> (and add a regular link to the .ics in the body) of your html
documents:

<link rel="alternate" type="text/calendar" title"iCal" href="iCal.ics">

Subtitles.vtt
Accessibility is important. We all know this, but sometimes we find it
difficult to ensure our work is visible to the widest possible audience.
How many of us consider offering fallbacks, text transcripts, subtitles,
or audio descriptions for those with visual impairments?

Building a subtitles.vtt file is extremely easy. It might take a little bit of
effort to get the timings correct (as you have to sync the text to the

Page of 636 650

speech manually), however, at the end, you'll have a more accessible
website. It also has pretty good browser support.

Subtitle files can also be generated in multiple languages and offered
alongside your videos to provide international visitors with a better
experience. The information within these files can also be read with
Javascript and turned into human readable transcripts on the website.

Creating a Subtitles.vtt file
You can create a subtitle file using any text editor and call each track
what you'd like, however if you intend on offering multiple videos and
languages, it might be worth labelling them in a format such as 01-
EN.vtt (using two digit language codes) to avoid mix-ups.

If you don't want to build the files manually, there are some nifty tools
that can help with the process:

• Microsoft Caption Maker - https://dev.modern.ie/testdrive/
demos/captionmaker/

• VTT Captions - http://www.vttcaptions.com/

• Subtitle Edit - http://www.nikse.dk/SubtitleEdit

• Subtitle Workshop - http://www.uruworks.net/index.html

• AegiSub - http://www.aegisub.org/

• Jubler - http://jubler.org/

Some of these tools will not output subtitles in a compatible VTT
format. If this is the case (they may just support SRT), you can use this
great converter or if you prefer command line only use this instead.

If you do want to build the file by hand instead, it's really straight
forward. Below is the sort of code you might find in a subtitle file:

WEBVTT

1
00:00:01.000 --> 00:00:10.000
This is the first ten seconds of the video.

Page of 637 650

2
00:00:10.100 --> 00:00:14.900
Milliseconds count too!

3
00:00:15.000 --> 00:00:27.000
You can break <00:00:18.000> section down into <00:00:21.000>
parts for occasions <00:00:24.000> like karaoke songs!

4
00:00:28.000 --> 00:00:30.000 A:end
You can style text too!

5
00:00:31.000 --> 00:00:38.000 D:vertical
<00:00:31.000><v tom>You can also give the speaker names too.</
v>
<00:00:35.000><v rebecca>so they can have a conversation.</v>

Each WebVTT file is comprised of a declaration that states it's a
WebVTT file, followed by equally spaced cues that break down the
segments of the video. You can use cues as chapter markers by
compiling a VTT file of the most important ones and using
kind="chapters" in the below track element code example.

Each element of the subtitle is comprised of a timeframe; made up of
the hour, minutes, seconds and milliseconds from and to the event
being spoken. The format is HH:MM:SS.TTT —-> HH:MM:SS.TTT.

Page of 638 650

You can also change how your subtitles appear visually. More options
are available but I'll cover the coolest below:

• Make the subtitle box appear vertical on the left by using
D:vertical or on the right D:vertical-lr (place the code after the
timescale).

• Align the text left (A:start), center (A:middle), or right (A:end)
within the subtitle box (place the code after the timescale).

• You can also use , <I>, and <U> within the VTT file to draw
attention to important subtitled words.

• Even better, you can even use <c.myClass>text</c> to allow CSS
styling within VTT (browser support is limited).

When you have conversations with multiple people, it helps to keep
track by assigning identities. In the example above (Chapter 5) you'll
notice I've used <v tom> and <v rebecca> as an example of how you
can really give your subtitles context.

Once you've built your VTT file and are ready to add it into your
video, it should be a matter of linking it using the HTML5 track
element (just remember to test that it all works and the timings are
fine). Below I've included a full example:

<video width="640" height="480" controls preload="metadata">
<source src="media/01.mp4" type="video/mp4">
<track src="media/01-EN.vtt" kind="subtitles" srclang="en"
label="English" default>

</video>

Manifest.json & Browserconfig.xml
Who doesn't love a favicon? These 16x16 graphics have taken the web
by storm and have become one of the smallest but most identifiable
aspects of a sites identity. We've gone from having icons so small that
you can barely see them to graphics large enough to fit as a speed-
dial or television set icon - and a wide range of use-cases in between.

With this in mind, Google's Android and Microsoft's Windows Phone
have separated from Apple's iOS in their approach to favicon

Page of 639 650

presentation. It used to simple in the past: you had a favicon.ico for
Internet Explorer and an apple-touch-icon.png file for iOS (and
compatible mobile) devices at various sizes.

In a previous article I covered the apple-touch-icon so now it's time to
cover Android's Manifest.json file and Microsoft's Browserconfig.xml
file. Each has it's own method of showcasing home screen icons, each
has it's own size requirements, each has it's own syntax rules.

For both of these formats you'll need images, I recommend PNG
format and optimizing them using tools like ImageOptim to get the
file sizes as small as possible. For the file dimensions needed, check
the code samples for "sizes" (manifest.json) and the numbers in the
square and wide (browserconfig.xml) tags.

Creating a Manifest.json file
Just like many of the small files in this list, you can create the file using
any text editor, but you must keep the file name as-is (manifest.json)
and the file should be kept in the base directory as that's where
devices tend to request it by default.

Below is an example of what the code should include:

{
"short_name": "Six Revisions",
"name": "Six Revisions - Web Design Tutorials, News and
Articles",
{

"src": "/android-36.png",
"sizes": "36x36",
"type": "image/png",
"density": "0.75"

},
{

"src": "/android-48.png",
"sizes": "48x48",
"type": "image/png",
"density": "1.0"

Page of 640 650

},
{

"src": "/android-72.png",
"sizes": "72x72",
"type": "image/png",
"density": "1.5"

},
{

"src": "/android-96.png",
"sizes": "96x96",
"type": "image/png",
"density": "2.0"

},
{

"src": "/android-144.png",
"sizes": "144x144",
"type": "image/png",
"density": "3.0"

},
{

"src": "/android-192.png",
"sizes": "192x192",
"type": "image/png",
"density": "4.0"

}
}

The file contains a short title which is what the app will be called on
the home screen (as opposed to what is in the title bar of the browser
window or the name).

Each property contains sizing information (the pixel size and density
level), the file MIME type, and of course a link to the image which you
can change to match the location on your server.

Page of 641 650

Once you've completed your file, you just need to add a link within
the <head> of your html. Below is an example you can use:

<link rel="manifest" href="manifest.json">

Creating a Browserconfig.xml file
You can create this file using any text editor however the filename
must match browserconfig.xml and it must be placed in the base
directory of your website (as devices will explicitly make http requests
for it).

Page of 642 650

Below is an example of what the code should include:

<?xml version="1.0" encoding="utf-8"?>
<browserconfig>

<msapplication>
<tile>

<square70x70logo src="http://www.sixrevisions.com/
images/70s.png"/>
<square150x150logo src="http://www.sixrevisions.com/
images/150s.png"/>
<square310x310logo src="http://www.sixrevisions.com/
images/310s.png"/>
<wide310x150logo src="http://www.sixrevisions.com/
images/tile-wide.png"/>
<TileColor>#FFFFFF</TileColor>

</tile>
</msapplication>

</browserconfig>

Page of 643 650

The file contains an XML DTD with a browserconfig declaration tag
and a tag stating that the the home-screen icon will be a web-app (it'll
run in a browser shell on the phone).

Inside the tile tag you'll see four icons each of which conform to the
requirements of the Windows phone resolution for static and live tiles
and a hex color code for background transparency.

Now, just like with the manifest, add a link to it within the head of your
HTML:

<meta name="msapplication-config"
content="browserconfig.xml">

If you also want to offer legacy support for older versions of IE
mobile, you can add a non-live tile which doesn't use the
browserconfig.xml file by referencing the below in the head of your
HTML:

<meta name="msapplication-TileColor" content="#FFFFFF">
<meta name="msapplication-TileImage" content="images/
tile-144.png">

.htaccess
One of the most complicated small files out there has always been
the server configuration file. If you make a mistake, your site goes
down. If you really make a mistake, your server goes down.
Therefore, people have been timid to tweak it in the past.

The most common server software is Apache, nGenx, and IIS; though
Mac OS X server, Node, and others have fans. While Apache is the
one I'll discuss as it's the server I primarily use, I'll also include
documentation for a few others in the notes.

Page of 644 650

The server configuration file is where many of the really substantial
benefits to a site can be made. Custom error pages, GZIP
compression, caching, url rewrites, general performance tweaks, and
more can be configured and maintained. Being able to manage these
settings is a very useful skill for any developer.

It's worth noting that the more you pack into the htaccess file, the
more impact it will have on your servers processor - so try to keep it
as efficient as possible. If you do have root access to your server, you
can place repeat rules within the httpd.conf file (instead) to improve
performance further.

Creating a .htaccess file
If you're going to tinker with your servers configuration files, you
should first check your hosts documentation to review any special
requirements or details that may affect their location, implementation
or usage.

If you're going to be making the changes to httpd.conf, you won't
need to create any files as the file should already exist on your server.
Just track it down and open it up (though be sure to make a backup in
case you make a mistake).

If you're working with .htaccess, you can use any text editor, create a
new empty file and save it with the .htaccess extension (this means

Page of 645 650

there is no filename and may show on your OS as a hidden file).
When you upload the file it will usually go in the base directory of
your domain.

Once you're ready to begin crafting your configuration files contents,
the best advice I can offer is to use the Apache server configs from
the HTML5 boilerplate as a template. It's always kept current, has lots
of useful material to get started with and you can trim away the bits
you don't require.

Boilerplates & Docs:

• Apache Server Configs - https://github.com/h5bp/server-
configs-apache/

• Apache Documentation - https://httpd.apache.org/docs/

• IIS Server Configs - https://github.com/h5bp/server-configs-iis/

• IIS Documentation - http://www.iis.net/configreference/

• nGenx Server Configs - https://github.com/h5bp/server-
configs-nginx/

• nGenx Documentation - http://nginx.org/en/docs/

• Node.js Server Configs - https://github.com/h5bp/server-
configs-node/

• Node.js Documentation - https://nodejs.org/en/docs/

Crossdomain.xml
With the introduction of AJAX in the Web 2.0 movement, a central
component of the process was CORS (Cross-Origin-Resource-
Sharing). This allowed websites to request data (and permission to
use that resource) from other sites. While fairly straight forward and
needing little more than an HTTP header for most media types,
Adobe Flash - the archaic web format requires something a bit
special.

Page of 646 650

https://github.com/h5bp/server-configs-apache/
https://github.com/h5bp/server-configs-apache/
https://httpd.apache.org/docs/
https://github.com/h5bp/server-configs-iis/
http://www.iis.net/configreference/
https://github.com/h5bp/server-configs-nginx/
https://github.com/h5bp/server-configs-nginx/
http://nginx.org/en/docs/
https://github.com/h5bp/server-configs-node/
https://github.com/h5bp/server-configs-node/
https://nodejs.org/en/docs/

Adding a crossdomain.xml file to your website allows your flash file to
allow CORS requests to and from external sites. If all your media is
embedded directly within your SWF files then this file isn't necessary.
However, if your file downloads or streams any resource hosted on a
third party server (like an image or video), you'll need this important
file to give it permission to proceed (otherwise external files won't
load).

Creating a Crossdomain.xml file
You can create a this file using any text editor. However, it must be
placed in the root directory of your website and the filename must be
"crossdomain.xml".

Below is an example of what the code should include:

<?xml version="1.0"?>
<cross-domain-policy>

<allow-access-from domain="www.sixrevisions.com" />
<site-control permitted-cross-domain-policies="master-only" />

</cross-domain-policy>

Every file begins with the DTD and a tag which declares it as a cross
domain policy file.

Page of 647 650

Inside this, you can edit allow-access-from elements in a number of
ways:

• Edit the domain attribute to match the URL (or IP address) where
the resource(s) are located.

• Include additional allow-access-from elements if you want to
use resources from multiple domain names.

• Use the secure="false" or secure="true" attribute to allow
switching between HTTP and HTTPS servers.

The site-control tag sets permissions for cross-domain requests - by
default it's set to master-only. If you don't have flash files or don't want
flash talking to third party sites, set it to none (the most restrictive
policy).

Sources:

• https://validator.w3.org/feed/

• http://cyber.law.harvard.edu/rss/rss.html

• https://tools.ietf.org/html/rfc4287

• http://dublincore.org/metadata-basics/

• http://dev.opml.org/spec2.html

• http://www.opmlicons.com/

• http://microformats.org/wiki/hcalendar

• https://en.wikipedia.org/wiki/ICalendar

• http://www.grokkingandroid.com/recurrence-rule-and-
duration-formats/

• http://videojs.com/

• http://www.w3.org/TR/webvtt1/

• https://atelier.u-sub.net/srt2vtt/

• https://github.com/mafintosh/srt-to-vtt

• https://w3c.github.io/webvtt/

• https://developer.mozilla.org/en/docs/Web/API/
Web_Video_Text_Tracks_Format

Page of 648 650

https://validator.w3.org/feed/
http://cyber.law.harvard.edu/rss/rss.html
https://tools.ietf.org/html/rfc4287
http://dublincore.org/metadata-basics/
http://dev.opml.org/spec2.html
http://www.opmlicons.com/
http://microformats.org/wiki/hcalendar
https://en.wikipedia.org/wiki/ICalendar
http://www.grokkingandroid.com/recurrence-rule-and-duration-formats/
http://www.grokkingandroid.com/recurrence-rule-and-duration-formats/
http://videojs.com/
http://www.w3.org/TR/webvtt1/
https://atelier.u-sub.net/srt2vtt/
https://github.com/mafintosh/srt-to-vtt
https://w3c.github.io/webvtt/
https://developer.mozilla.org/en/docs/Web/API/Web_Video_Text_Tracks_Format
https://developer.mozilla.org/en/docs/Web/API/Web_Video_Text_Tracks_Format

• https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/MobileHIG/IconMatrix.html

• http://www.w3.org/TR/appmanifest/

• https://developers.google.com/web/fundamentals/engage-
and-retain/simplified-app-installs/?hl=en

• https://msdn.microsoft.com/library/dn455106.aspx

• http://www.buildmypinnedsite.com/en

• https://msdn.microsoft.com/en-us/library/dn320426(v=vs.
85).aspx

• http://httpd.apache.org/docs/current/howto/htaccess.html

• https://www.adobe.com/devnet/articles/
crossdomain_policy_file_spec.html

• http://www.adobe.com/devnet/adobe-media-server/articles/
cross-domain-xml-for-streaming.html

Page of 649 650

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
http://www.w3.org/TR/appmanifest/
https://developers.google.com/web/fundamentals/engage-and-retain/simplified-app-installs/?hl=en
https://developers.google.com/web/fundamentals/engage-and-retain/simplified-app-installs/?hl=en
https://msdn.microsoft.com/library/dn455106.aspx
http://www.buildmypinnedsite.com/en
https://msdn.microsoft.com/en-us/library/dn320426(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dn320426(v=vs.85).aspx
http://httpd.apache.org/docs/current/howto/htaccess.html
https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html
http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html

Page of 650 650

Through my six years as Six Revisions most prolific
contributing author, I wrote 45 articles on a range of
subjects including Web Design, UX Design and Full-
Stack Web Development. Now that the Six Revisions
website is defunct, I’ve taken the time to carefully
package all of my articles into a book.

While some of the best practices and code may be
dated, holding only nostalgic value; a lot of the
information is surpassingly still relevant. It’s for this
reason I decided to restore my collective work.

There’s tonnes of code, plus hundreds of tips, links and
topics for everyone - from beginner to expert alike.
There’s a few exclusive (unseen) articles included in
this book too. I hope you enjoy this compilation.

Alexander Dawson
(Author)

Six Revisions
45 Articles for Web Developers

“Excellent post Alexander!”  
James Royal-Lawson (UX Podcast)

“Love your illustrations!” 
Amber Weinberg

“Great post for educating people in the industry.” 
Dainis Graveris (1st Web Designer)

“Fantastic article Alex! You must have put some work into it!! Well done.” 
Sheena Oosten

“I really enjoy your articles Alex. They are never irrelevant. Thanks for another great read.” 
Young J Yoon

“Alex, you’re really contributing a huge amount of very useful articles for SR This is terrific.” 
Michael Tuck

“A picture says a thousand words (but the words are great too!).” 
Carolyn King

Visit: https://alexanderdawson.com

	Six Revisions
	Table of Contents
	The Anatomy of a Website
	Designer DNA: Schemas and DTDs
	Skeletal Structure: The Structural Markup
	Mechanical Muscles: Client-side Scripting
	Nervous Reactions: The Web Browser
	The Heart: Content and the Community
	Blood Vessels: Information Architecture
	Sexy Skin: Aesthetics and Web Design
	Brain Retain: Server-side Scripting and DBMS
	Nature versus Nurture
	Web Languages: Decoded
	Too Many Cooks
	What Web Language Should You Learn?
	Language Layers
	Collective Choices
	Markup Languages
	Syndication Languages
	Metadata Languages
	Stylesheet and Transform Languages
	Client-Side Scripting
	Server-Side Scripting
	Database Management Systems
	Sandboxed Languages
	Server-Side/Web Server Settings
	Rich Internet Applications
	Vector Modeling Languages
	PostScript Format Languages
	Data Formatting Languages
	Document Schema Languages
	A Caveat about Comprehensiveness
	Going Forward
	Just Starting Out?
	Factors That Can Affect Your Choice
	Don’t Sweat It
	Semantic CSS3 Lightboxes
	What About Scripting?
	Why Not Just Use JavaScript?
	Browser Support of this CSS Lightbox
	Magic Markup!
	A Little Bit More About the "Shader"
	What Should the href Value Be?
	What Can the divs Contain?
	Add a YouTube Video
	Right on :target
	Setting Standards
	Get Involved with CSS3. Please.
	Problems Using Web Validation Services
	Current Practices
	Not Using Valid Code
	Blindly Following the "Rules"
	Context is King
	You Can Make Decisions That Robots Can’t
	Code Validation
	Failing Because of Future Standards
	Taking Stuff Out For The Sake of a Badge
	Web Accessibility Validation
	The Only Way to Test for Accessibility and Usability is through People
	Translation Troubles
	A Translation Exercise to Test the Idea
	The Silver Bullet
	Sexy Tooltips with Just CSS
	Tooltips are Terrific!
	Leveraging Progressive Enhancement in Tooltips
	What We’re Going to Make
	CSS3 Extras
	Under the Hood
	Different Types of Tooltips
	Cross-Browser Compatibility
	Basic Markup
	HTML Markup
	Why Use Anchor Tags for Tooltips?
	Basic CSS
	Basic CSS Styles for .tooltip Class
	Web Accessibility Considerations
	CSS for Displaying the Tooltips
	CSS for Showing the Tooltips
	Star HTML Hack Necessity
	CSS for Giving the Tooltips Some Color
	CSS for Color Scheme
	CSS3 for Progressive Enhancement of Sexiness
	Additional CSS for Modern Browsers
	Food for Thought
	250 Quick Web Design Tips (Part 1)
	Planning and Getting Into the Web Design Profession
	Picking Domain Names
	Web Hosting
	Development Platform
	Tools
	Project Management
	Learning
	Specialization and Competitive Analysis
	Learning About Your Target Audience
	Inspiration
	Handling Data
	Conceptualization & Information Architecture (IA)
	Miscellaneous
	Content Creation
	Copyright, Content Licensing and Legalities
	Content Formats and Considerations
	Images
	Content Writing
	Multimedia Content
	Design Elements
	Colors
	Typography
	Arranging Design Elements
	End-User Considerations
	Web Accessibility
	Usability
	250 Quick Web Design Tips (Part 2)
	Development
	Debugging and Testing
	Browsers and User Agents
	Behaviour
	Markup
	Styles
	Various Web Technologies
	JavaScript
	Miscellaneous
	Marketing
	Search Engines and Rank
	Best Practices
	Advertising
	Branding, Reputation, Networking
	Selling
	Social Media, Social Networking and Blogging
	Miscellaneous
	The Web’s Undead
	Nature of the Beast
	Zombie Browsers
	Zombie Technologies
	Zombie Code
	Zombie Design Practices
	The Circle of Life
	5 Web Files That Will Improve Your Website
	An Overview
	Robots.txt
	Creating a Robots.txt File
	Robots.txt Non-Standard Directives
	Favicon.ico
	Creating a Favicon.ico file
	Favicon's in Apple Devices
	Sitemap.xml
	Other Sitemap Tags
	Dublin.rdf
	Creating a Dublin.rdf File
	OpenSearch.xml
	Simple, Small and Effective
	A Guide on Layout Types in Web Design
	About Your Options
	Absolute Layouts
	Relative Layout
	Fixed Layout
	Elastic Layout
	Scaled Layout
	Liquid (or Fluid) Layout
	Equated Layout
	Fluid-Min/Max Layout
	Conditional Layout
	Hybrid Layout
	The Bigger Picture
	Reductionism in Web Design
	Reductionism in Web Design
	Benefits for the User Experience
	Principles of the Methodology
	Content Reductionism
	Code Reductionism
	Design Reductionism
	Reductionism Tips
	To Achieve Content Reductionism
	To Achieve Code Reductionism
	To Achieve Design Reductionism
	To the Power of 50%
	Final Thoughts
	The Art of Distinction in Web Design
	Distinctive Design
	Noise Margins
	Spatial Awareness
	Drawing Focus
	Contrasting Mediums
	Highlight for Impact
	Attention to Detail
	A Comprehensive Guide Inside Your <head>
	Mastering the Mind
	Head Elements Gone Rogue
	Independent Elements
	Example:
	Mighty <meta> Tags
	Example:
	Code Example:
	Example:
	Luxury <link> Tags
	Example:
	Example:
	Example:
	Example:
	Wrapping Up
	Mobile Web Design: Best Practices
	Delivering the Design
	Complications in Delivery Method
	Adapting a Web Design to Support Mobile Devices
	Redirect Mobile Users to a Mobile Version of the Site
	Tips on Redirection
	Structure and Code
	Choices
	Speed and Cost (to the User)
	Layout Essentials
	Simplicity
	Avoid Scrolling
	Size of Navigation and Clickable Objects
	Content Design
	Text Content
	Images
	Video/Audio
	Other Issues to Consider
	Interaction in Mobile Devices vs. Personal Computers
	Proprietary Technologies and Plugins
	Web Services with Persistent Internet Connections
	Testing Your Mobile Website
	Testing with Mobile Device Emulators
	Simple, Small and Speedy
	CSS3 Card Trick: A Fun CSS3 Experiment
	A Primer on Innovation
	Fragments and Fieldsets
	Unicode Characters for the Card Suits
	What’s With The Web Form?
	Laying the Foundations
	IE Support
	Navigation, Simplified!
	Styling the Aces
	Navigation and Animation
	Dealing with Internet Explorer
	Playful Innovation
	Designing By Numbers: Data Analysis for Web Designers
	Designing by Numbers
	What?
	Why?
	How?
	Statistical/Gathering Methods
	On-Site Data
	Third-Party/Generalized Data
	Social Data
	Designers Demographics
	A Quick Measurement
	Importance of Location:
	Importance of Type:
	Importance of Reliability:
	Importance of Margin:
	Variable Considerations
	Research Matters
	The Science Behind a Single Page Website
	Once Is Enough for Me
	Trends and Tribulations
	Benefits of Single Page Websites
	Disadvantages of Single Page Websites
	Production Theory
	Manual Scrolling
	CSS3 Interaction
	JavaScript
	A Showcase of Single Page Web Designs
	Is Single Page Websites for You?
	Improve Site Usability by Studying Museums
	A-Maze-ingly Unfriendly
	What We Can Learn from Museums and Art Galleries
	The Connection
	Components of Museums and Art Galleries
	Featured Exhibits
	Signs and Directions
	Brochures and Reference Booklets
	Maps
	Human Assistance
	Interactive Exhibits
	Space and Clarity
	Souvenirs
	Producing Digital Equivalents of Museum Components
	Website Equivalent of Featured Exhibits
	Website Equivalent of Signs and Directions
	Website Equivalent of Brochures and Reference Booklets
	Website Equivalent of Maps
	Website Equivalent of Human Assistance
	Website Equivalent of Interactive Exhibits
	Website Equivalent of Space and Clarity
	Website Equivalent of Souvenirs
	Structure from the Chaos
	Human Behavior Theories That Can be Applied to Web Design
	Empowerment and Maslow’s Hierarchy
	Attractiveness Bias
	Serial Positioning Effect
	Depth of Processing
	Fitts’s Law
	Cognitive Load
	The Zombie Browsing Effect
	Conditioning Models
	Conclusion
	Evolution of Websites: A Darwinian Tale
	A Matter of Carbon Dating
	Code
	Web Browsing Devices
	Trends and Conventions
	Single-Celled Organisms
	Biodiversity in Design
	Survival of the Fittest
	From Primate to People
	Looking to the Future
	Privacy and the User Experience
	Our Thirst for Information
	The Value of Knowledge
	Progressive Disclosure
	Breaking Down Barriers
	Invisible Data-Mining
	Value Your Users’ Data and Privacy
	100 Exceedingly Useful CSS Tips and Tricks
	General
	At-rules, Selectors, Pseudo-classes, and Pseudo-elements
	Layout and the Box Model
	Typography and Color
	Style Can Be Stylish!
	The A-Z List for Web Designers
	A is for Accessibility
	B is for Browsers
	C is for CSS
	D is for Debugging
	E is for Ethnography
	F is for Flash
	G is for Graphics
	H is for HTML
	I is for Interaction Design
	J is for JavaScript
	K is for Keywords
	L is for Limitations
	M is for Metadata
	N is for Navigation
	O is for Objectivity
	P is for Psychology
	Q is for Quality
	R is for Readability
	S is for Server-Side
	T is for Typography
	U is for Usability
	V is for Visitors
	W is for Web Standards
	X is for XML
	Y is for "Yes!"
	Z is for Zipping
	Alphabet Soup
	Ultimate Guide to Microformats: Reference and Examples
	What Are Microformats?
	Benefits of Using Microformats
	Drawbacks of Microformats
	Microformats Reference Table
	rel Attribute Values
	Using Microformats: Examples
	Adr
	Attribute values:
	FOAF
	Geo
	Required attribute values:
	hAtom
	Attribute values:
	hAudio
	Required attribute values:
	Other attribute values:
	hCalendar
	Required attribute values:
	Other attribute values:
	hCard
	Required attribute values:
	Other attribute values:
	hListing
	Required attribute values:
	Other attribute values:
	hMedia
	Attribute values:
	hNews
	Required attribute values:
	Other attribute values:
	hProduct
	Required attribute value:
	Other attribute values:
	hRecipe
	Required attribute values:
	Other attribute values:
	hResume
	Required attribute value:
	Other attribute values:
	hReview
	Required attribute value:
	Other attribute values:
	hSlice
	Required attribute values:
	Other attribute values:
	Rel
	Attribute values:
	Robot Exclusion Profile
	Attribute values:
	VoteLinks
	Attribute values:
	XFN
	Attribute values:
	xFolk
	Required attribute values:
	Other attribute value:
	XMDP
	XOXO
	Conclusion
	Becoming a Better Web Designer
	A Need to Improve
	Education
	Internships
	Conferences and Workshops
	Networking and Mentoring
	Books, Blogs, Articles, Podcasts and Videos
	Engaging in Side Projects
	Never Stop Learning
	Ways to Horrify Website Designers
	Horrors on the Web
	Automatically Playing Music
	Flashing Content
	Hideous Source Code
	Sudden Client Deadlines
	Outdated Technology
	Obnoxious Scripts
	Exploitative Site Activities
	Get The Oxygen, Nurse!
	60 Questions to Consider When Designing a Website
	Why Asking Yourself Questions Is Important
	15 Questions for Project Management
	15 Questions for Code-Authoring
	15 Questions for Web Designing
	15 Questions for the User Experience
	Situational Design for the Web
	Problems with Singular Solutions
	We Need Dynamic Designs
	The Benefits of Separating Structure
	Content Design Optimization
	The Web’s Wild West
	The Importance of Historiography on the Web
	Evolution of Knowledge-Sharing
	Digital Curators and Librarians
	The Danger of Disposable Data
	Missing Links and Lost Empires
	Historiography for the People
	Why IE9 is a Web Designer’s Nightmare
	My Rocky Relationship with IE9
	Internet Explorer Is Improving
	Will IE9 Be the New IE6?
	Marketing Machine
	Is IE9 a Modern Browser?
	Why It Matters
	Progressive Disclosure in User Interfaces
	What Is Progressive Disclosure?
	The Good, Bad and Indifferent
	Progressive Disclosure Basics
	Progressive Disclosure Design Patterns
	Primary Progressive Disclosure Methods
	Hyperlinks
	Scrolling
	CSS Media Queries
	Server-side Techniques
	Secondary Progressive Disclosure Methods
	Mouse and Focus Events
	Conditional CSS
	Ajax
	Pop-up windows
	Modal windows
	Some Things to Keep In Mind
	Showcase of Progressive Disclosure Examples
	Summary
	Effective Communication Tips for Web Designers
	Reactive Design: Beyond Simple Objects
	Tips for Optimizing Content
	Enhancing Visual Communication
	Enhancing User Interaction
	Going Beyond Protocol
	Golden Rules for Communication
	Improving Communication with Customers and Clients
	Final Reflection
	Designing for Different Age Groups
	From 0 to 80 in Under 5 Seconds
	Why It Matters
	Designing For Early Years
	Designing For Tweens and Teens
	Designing For Adults of All Ages
	Designing for Later Years
	Age Matters in Web Design
	Smarter Web Designs: Responsive and Customizable
	Intuitiveness: The Double-Edged Sword
	Design Smart, Not Static
	Responsive and Suggestive Methods
	Presenting Related Content
	Relative Navigation
	Content Customization
	Smarter Search Features
	Customization Methods
	Profile Personalization
	Provide Opportunities for Contributing
	Some Responsiveness and Customizability Ideas
	Variable Designs
	Layout Profiles
	Customize Content Presentation Based on User Activity
	The Smart Website
	A Guide to CSS Colors in Web Design
	Color Value Notation
	Hexadecimal Value Notation
	RGB Value Notation
	HSL Value Notation
	Color Keywords and X11
	System Colors
	Color Opacity and Transparency
	Opacity
	Transparency
	Safe Colors
	Really-safe Colors
	Web-safe Colors
	Web-smart Colors
	Web Accessibility Considerations
	Monochromacy
	Dichromacy
	Trichromacy
	Color Associations
	Color Tools and Resources
	Conclusion
	5 Little-Known Web Files That Can Enhance Your Website
	Quick Overview
	P3P.xml
	Creating a P3P.xml File
	P3P.xml tools:
	Other useful resources:
	Geo.kml and Geo.rdf
	Creating a Geo.kml file
	Creating a Geo.rdf File
	Humans.txt
	Creating a Humans.txt File
	vCard.vcf
	Creating a vCard.vcf File
	PICS.rdf
	Creating a PICS.rdf file
	Summary
	The Evolution of Internet-Enabled Devices
	Computers and Laptops
	Smartphones
	Tablets, Netbooks and eReaders
	Television and Game Consoles
	Vehicles and Home Appliances
	Conclusion
	The Proxority Principle in Web Design
	Communication through Design
	Proxority Principle in Site Navigation
	Priority: Boost the Best, Weed out the Worst
	Rate Each Element’s Value
	Eliminate Unneeded Elements
	Proximity: Flow, Feedback and Functionality
	Rate Important Elements in Relation to Each Other
	Redesign
	Proxority: Examples and Patterns in Action
	Proxority: Origami for the Web
	Getting the Most Out of QR Codes Using URI Schemes
	How QR Codes Work in a Nutshell
	QR-Code Readers
	The Idea: Using URI Schemes
	The Possibilities
	Step 1: Choose the Response You Want to Perform
	Step 2: Create a URL Using a URL-shortening Service
	Step 3: Generate the QR Code
	The Finished QR Code
	Conclusion
	Why We Still Need Web-safe Fonts
	Why We Still Need a Web-safe Font Stack
	Incomplete Fonts
	Network Issues
	@font-face Can Be Turned Off Client-Side
	Web-safe fonts = Cheap and Easy Graceful Degradation
	References
	15 HTML Questions for Testing Your Knowledge
	Beginner Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Intermediate Questions
	Question 9
	Question 10
	Question 11
	Question 12
	Expert Questions
	Question 13
	Question 14
	Question 15
	How Did You Do?
	15 CSS Questions to Test Your Knowledge
	Basic CSS Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Intermediate CSS Questions
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Advanced CSS Questions
	Question 13
	Question 14
	Question 15
	Web Agility: Pushing for Performance
	Performance Budgets
	Setting Goals and Targets
	Going on A Data Diet
	Real Business Benefits
	A Guide to Styling with SVG
	Declaring and Editing Styles
	At-Rules, Selectors and Properties
	Best Practices for Maintainable Code
	Another 6+ Web Files to Help Improve Your Website
	Quick Overview
	Syndication XML Feeds
	Creating the RSS.xml and Atom.xml files
	Creating a Feed.opml file
	iCal.ics
	Creating a iCal.ics file
	Subtitles.vtt
	Creating a Subtitles.vtt file
	Manifest.json & Browserconfig.xml
	Creating a Manifest.json file
	Creating a Browserconfig.xml file
	.htaccess
	Creating a .htaccess file
	Crossdomain.xml
	Creating a Crossdomain.xml file

